

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

Ferro-Electric Fast Reactive Tuner Potential for HEP

N. Shipman¹, I. Ben-Zvi², G. Burt³, A. Castilla^{1,3}, M. Coly¹, F. Gerigk¹, C. Jing⁴,

A. Kanareykin⁴, A. Macpherson¹, N. Stapley¹, H. Timko¹.

¹CERN, ²BNL, ³Lancanster University, ⁴Euclid Techlabs.

Advanced RF UK Roadmap Meeting 2021

nicholas.shipman@cern.ch

Introduction

Basic Principle

Ferro-Electric Material

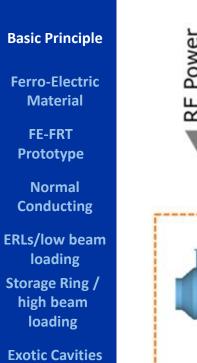
FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

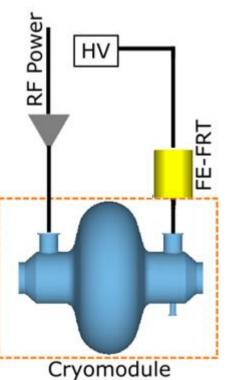
Exotic Cavities

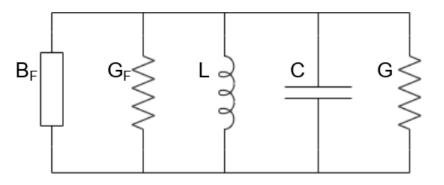
Further Examples


Conclusion

- Novel Class of tuner
- Extremely fast <~600ns</p>
- Enormous potential
 - Energy saving
 - Increased luminosity
- Multiple Research Directions
 - RF design
 - Feedback control
 - High Voltage Fast Switching
 - Material Science

- Wide applicability
 - Storage Rings
 - Energy Recovery Linacs
 - Electron Ion Colliders
 - Nb₃Sn/other materials
 - Super conducting and Normal conducting
- Simple and low cost
 - No moving parts
 - Outside liquid helium environment
 - Compact




Basic Principle

Further Examples

Conclusion

Tuning Range

•
$$\Delta \omega_F = \frac{\omega_0 \Delta B_F \sqrt{L/C}}{2}$$

Increase in Bandwidth

•
$$\sigma = \frac{G_F}{C}$$

Basic Principle

Ferro-Electric Material

FE-FRT

Prototype

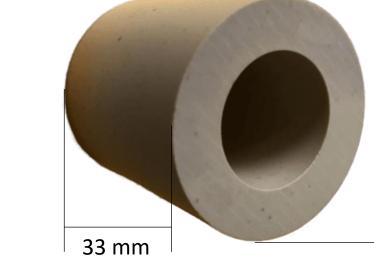
Normal

Conducting

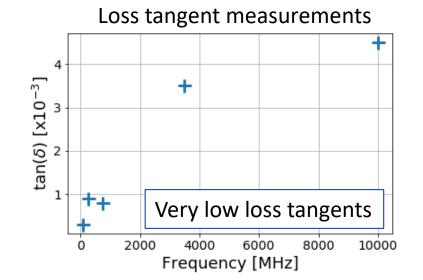
ERLs/low beam

loading Storage Ring /

> high beam loading


Exotic Cavities

Further Examples


Conclusion

Ferro-Electric Material

Parameter	Value
Relative Permittivity	160
Tunability	1.4
Breakdown Strength	20 Vµm ⁻¹
Thermal Conductivity	7.02 Wm ⁻¹ K ⁻¹
Estimated Max. Temperature Rise	50 K

A BST(M) Ferroelectric Sample

- BST(M) material
 - BaTiO₃-SrTiO₃ with Mg based additives
- 30 mm High Tunability
 - Low loss tangent
 - Approx. $\propto f$ between 10MHz 10GHz
 - "Low" relative permittivity

FE-FRT Prototype

Further Examples

Conclusion

- Our proof of principle device
- Let's see how it works!

FE-FRT Prototype

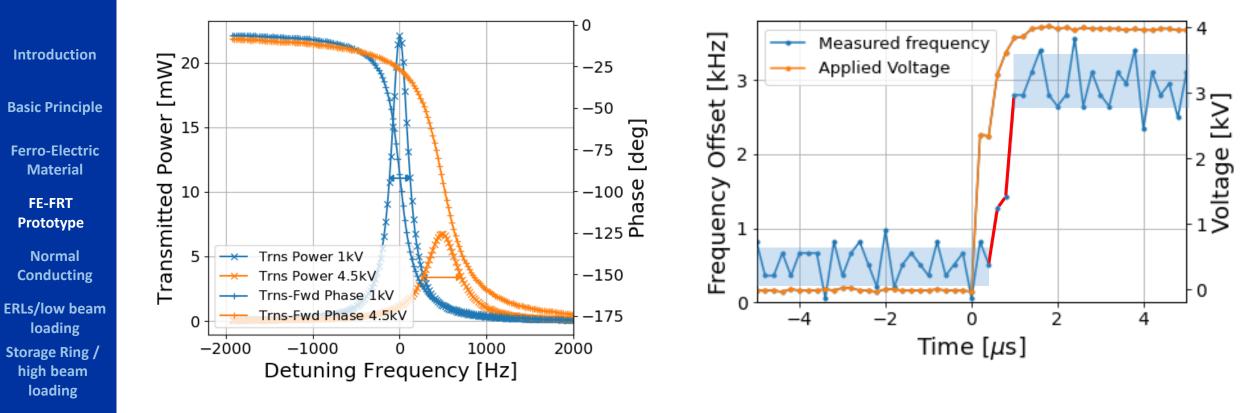
CERN

FE-FRT

Normal

loading

loading


Exotic Cavities

Further

Examples

Conclusion

FE-FRT Prototype

- Change of resonant frequency
- Change of bandwidth

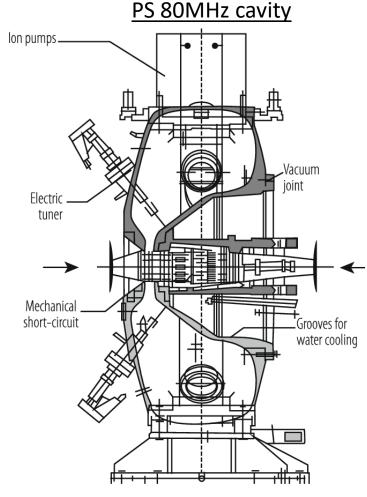
- Frequency shift ~600ns
- External circuit limited

Normal Conducting

Basic Principle

Ferro-Electric Material

FE-FRT Prototype


Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

PS 80MHz institute line and a state of the second state of the sec

Cavity Parameters	
Doromotor	

Parameter Value fo 80 MHz Qo 17000 R/Q 56 V 300 kV U 3.2 J

Specifications

Parameter	Value
$\Delta \omega_F$	$2\pi.230\mathrm{kHz}$
Q_{0+F}	> 10000

Implications

$$\Delta \mathcal{P}_{reac} = 2U\Delta\omega_F$$
$$\Rightarrow \Delta \mathcal{P}_{reac} > 9.2 \,\mathrm{MVar}$$

$$FoM = \frac{\Delta\omega_F}{\omega_0} \sqrt{Q_F^1 Q_F^2}$$
$$\Rightarrow FoM > 70$$

FE-FRT could achieve FoM > 100! I. Ben-Zvi, A. Castilla, A. Macpherson, and N. Shipman, "Ultra-High Reactive-Power Ferro-Electric Fast Reactive Tuner"

ERLs / low beam loading

- SRF cavities have very low intrinsic bandwidth
- Power needed to maintain voltage with microphonics is:

Basic Principle

Introduction

FE-FRT Prototype

Normal Conducting

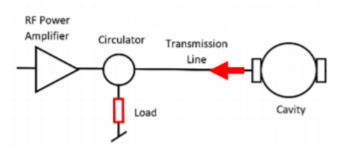
ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

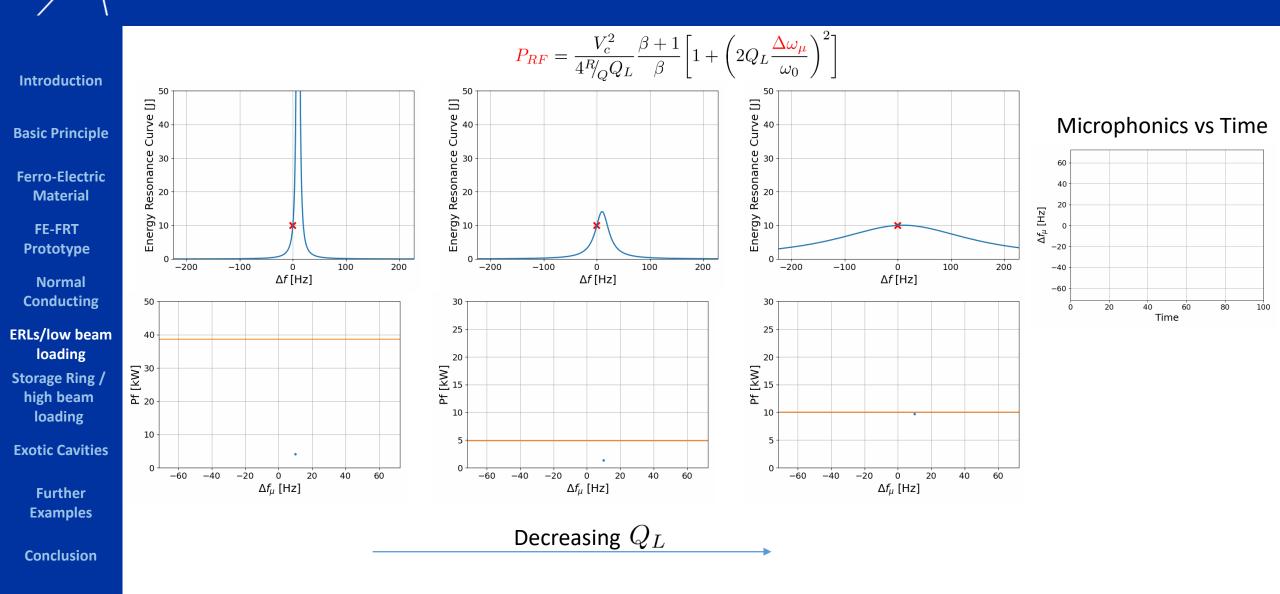
4

ŀ

Further Examples


Conclusion

Notation	Meaning
P_{RF}	RF power
V_c	Cavity Voltage
$\Delta \omega_{\mu}$	Microphonics Detuning
Q_L	Loaded Q
β	Q_0/Q_e


- $P_{RF} = \frac{V_c^2}{4^R / Q_L} \frac{\beta + 1}{\beta} \left[1 + \left(2Q_L \frac{\Delta \omega_\mu}{\omega_0} \right)^2 \right]$
 - Overcoupling antenna:
 - Decreases Q_L
 - Increases bandwidth
 - Reduces power
 - Much more power required than without

microphonics

Power dissipated in load

ERLs / low beam loading

ERLs / low beam loading

Introduction

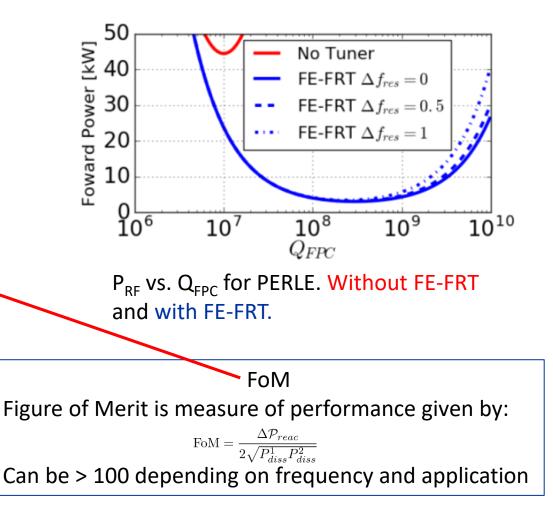
Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading


Exotic Cavities

Further Examples

Conclusion

- FE-FRTs could almost completely eliminate microphonics
 - Due to speed and
 - Non-mechanical nature
- Huge power savings
 - Peak power reduced by factor FoM/2
 - Average power reduced by factor FoM/4
- Some power lost in FE-FRT
 - Depends on FoM
- Factor ~15 reduction in peak power predicted for PERLE

PERLE case study

Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

$P_{RF} = \frac{R_{Q}Q_e}{2}$	$\left(\left[\frac{V_{c}'}{\omega_{0}R_{Q}'}+\frac{V_{c}}{2R_{Q}'Q_{L}}+\frac{V_{c}}{2R_{Q}}$	$-I_b \sin \Delta \phi_{bc} \bigg]^2 +$	$\left[\frac{V_c}{\omega_0 R_Q^R}(\phi_c' - \Delta \omega_D) - I_b \cos \Delta \phi_{bc}\right]$	$\left]^{2}\right)$

Notation	Meaning
P_{RF}	RF power
V_c	Cavity Voltage
I_b	Beam current
$\Delta\omega_D$	Detuning
$\Delta \phi_{bc}$	Beam – cavity phase

RF power required for cavity with beam:

Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

$R_{0}Q_{e} \left(\begin{bmatrix} V' \end{bmatrix} \right)$	V_{τ}	$\begin{bmatrix} 2 \\ V_{2} \end{bmatrix}$	

Can change Fixed

$$P_{RF} = \frac{R_{Q}Q_{e}}{2} \left(\left[\frac{V_{c}'}{\omega_{0}R_{Q}'} + \frac{V_{c}}{2R_{Q}Q_{L}} - I_{b}\sin\Delta\phi_{bc} \right]^{2} + \left[\frac{V_{c}}{\omega_{0}R_{Q}'}(\phi_{c}' - \Delta\omega_{D}) - I_{b}\cos\Delta\phi_{bc} \right]^{2} \right)^{2} + \left[\frac{V_{c}}{\omega_{0}R_{Q}'}(\phi_{c}' - \Delta\omega_{D}) - I_{b}\cos\Delta\phi_{bc} \right]^{2} \right)^{2} + \left[\frac{V_{c}}{\omega_{0}R_{Q}'}(\phi_{c}' - \Delta\omega_{D}) - I_{b}\cos\Delta\phi_{bc} \right]^{2} \right)^{2}$$

Notation	Meaning
P_{RF}	RF power
V_c	Cavity Voltage
I_b	Beam current
$\Delta\omega_D$	Detuning
$\Delta \phi_{bc}$	Beam – cavity phase

RF power required for cavity with beam:

Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

Notation	Meaning
P_{RF}	RF power
V_c	Cavity Voltage
I_b	Beam current
$\Delta\omega_D$	Detuning
$\Delta \phi_{bc}$	Beam – cavity phase

RF power required for cavity with beam:

$$\boldsymbol{P_{RF}} = \frac{V^2 Q_e}{8^{R}/_Q Q_L^2} + \frac{R/_Q Q_e}{2} \left[\frac{V}{\omega_0 R/_Q} (\boldsymbol{\phi_c'} - \Delta \omega_D) - \boldsymbol{I_b} \right]^2$$

Simplifying assumptions
$$V_c' = 0$$
$$\Delta \phi_{bc} = 0$$

Can change Fixed

Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

Meaning
RF power
Cavity phase derivative
Detuning
Beam current

RF power required for cavity with beam:

$$P_{RF} = A + [B(\phi_c' - \Delta\omega_D) - CI_b]^2$$

- I_b will change so either:
 - P_{RF} or ϕ_c must change
- Choice between:
 - Increased RF power
 - Cavity phase errors

Can change Fixed

Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

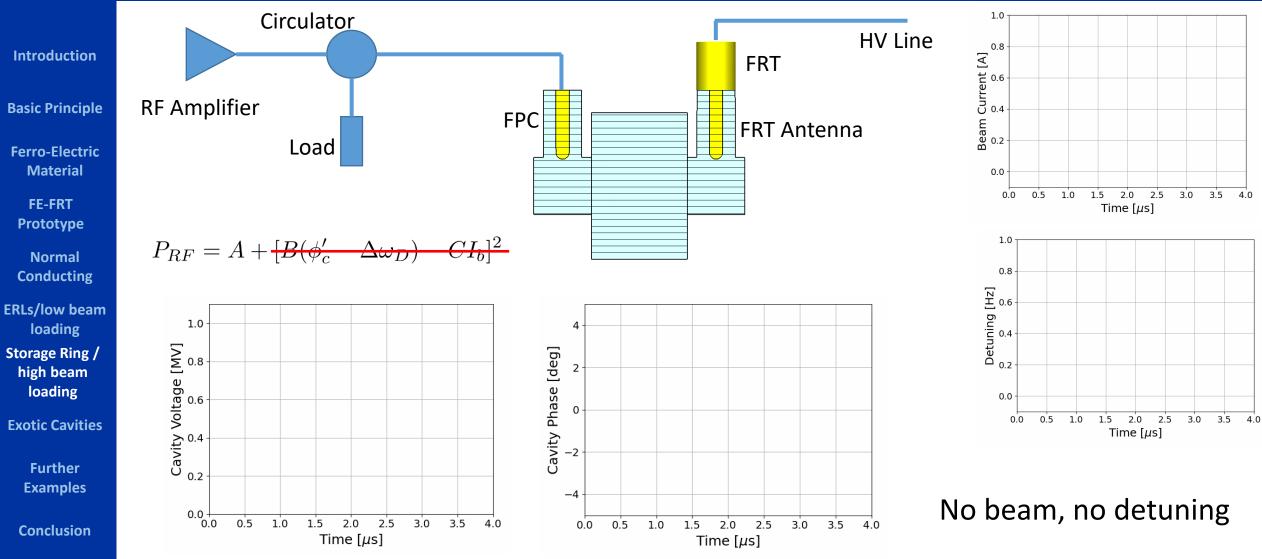
ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

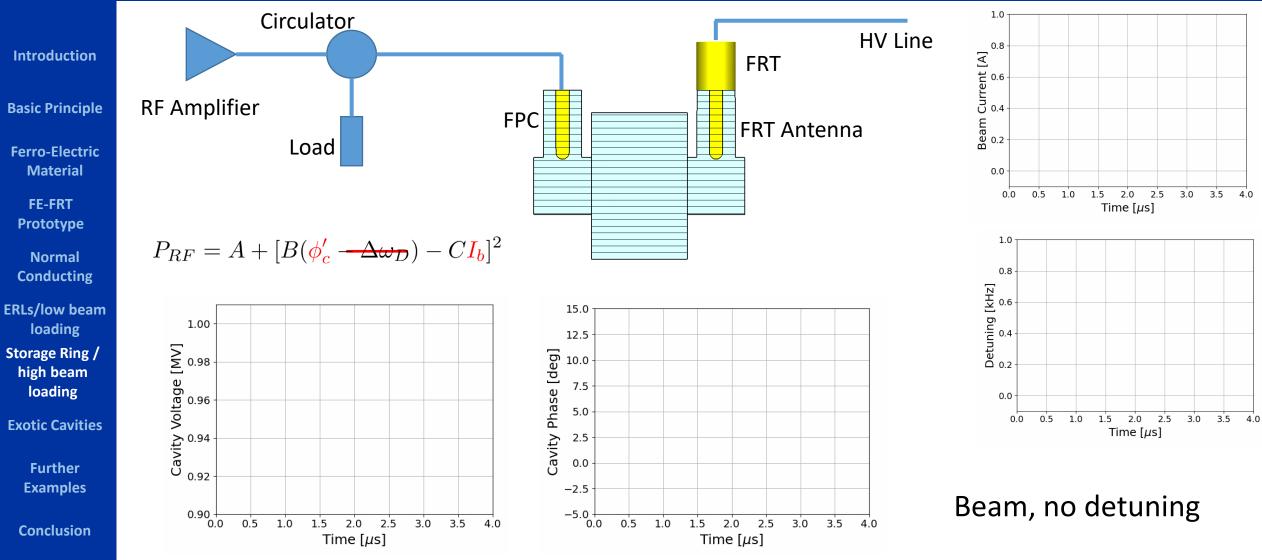
Further Examples

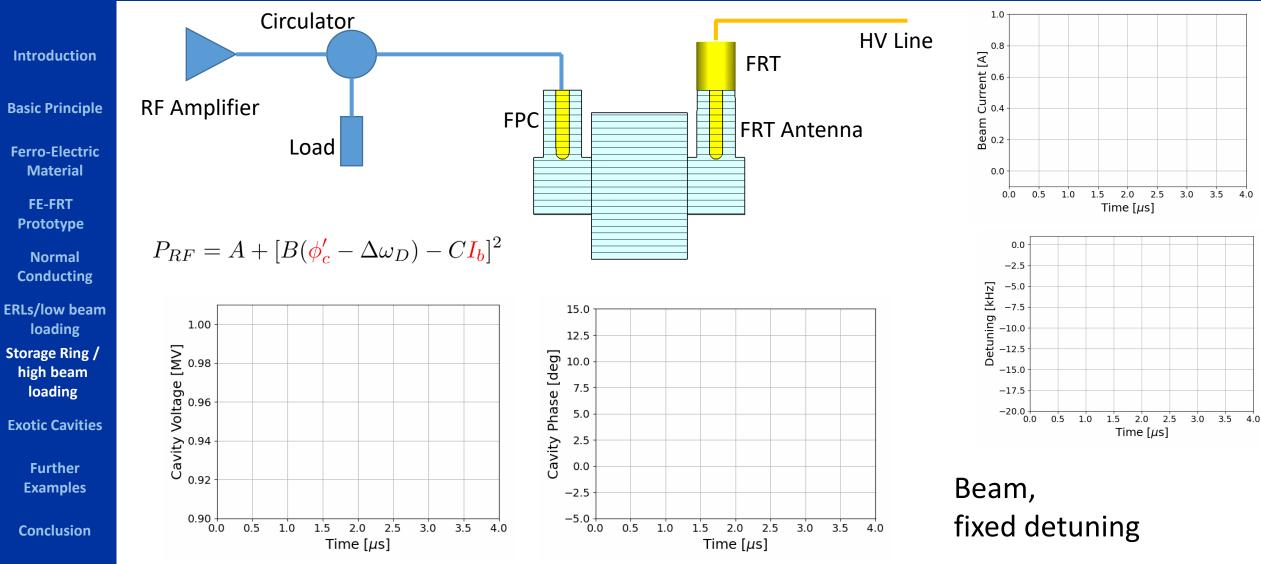

Conclusion

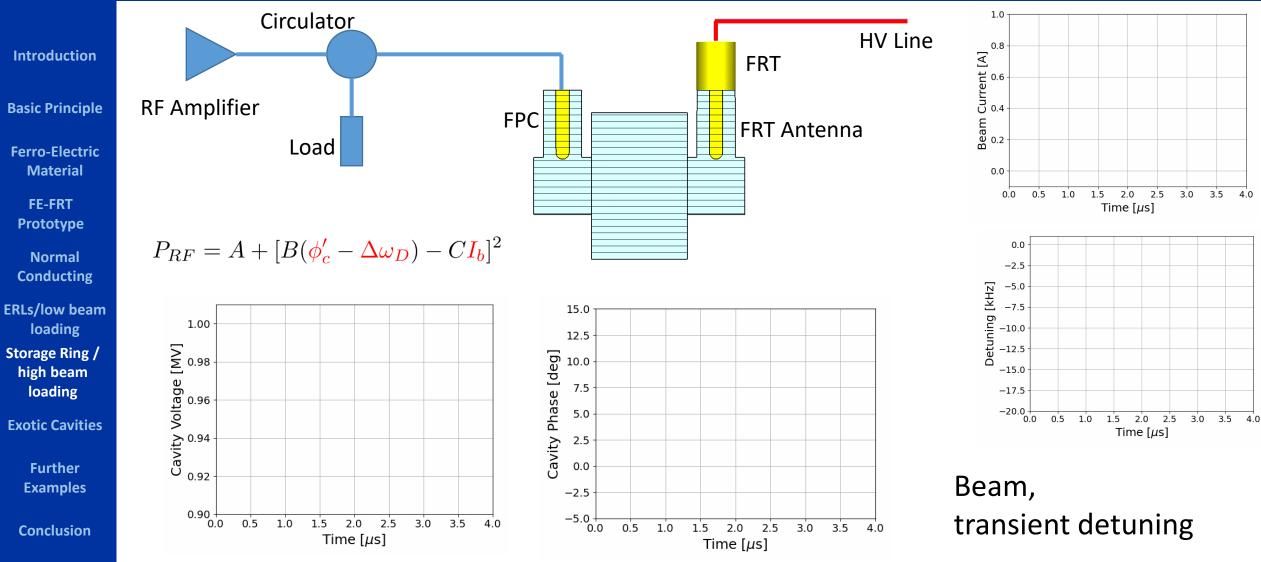
Notation	Meaning
P_{RF}	RF power
ϕ_c'	Cavity phase derivative
$\Delta\omega_D$	Detuning
I_b	Beam current

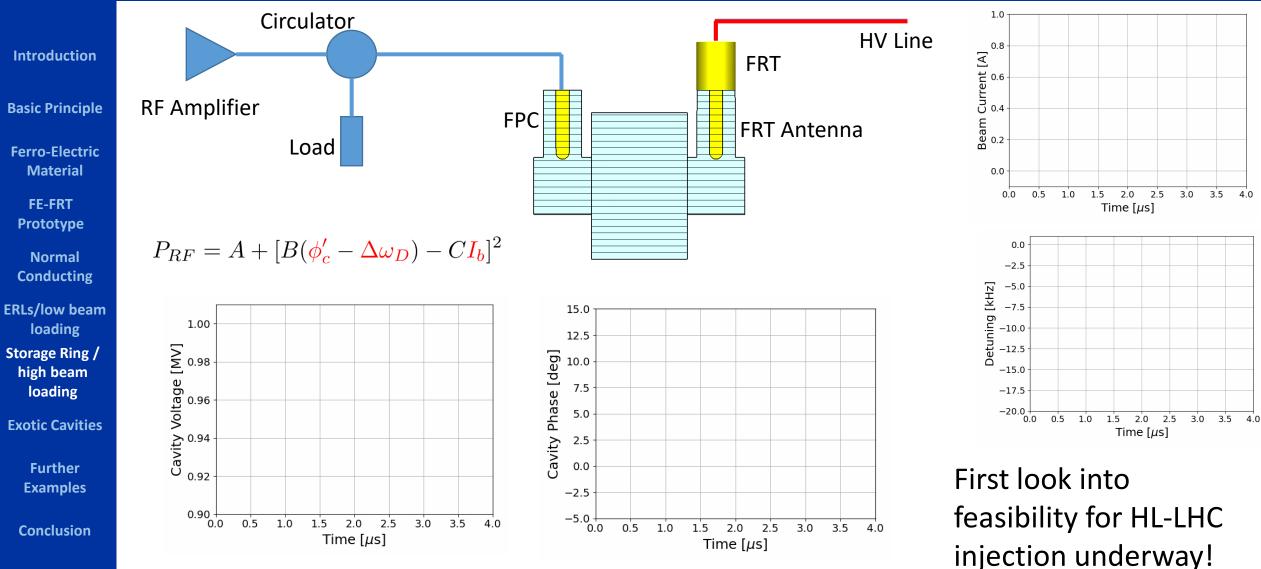

$P_{RF} = A + [B(\phi_c' - \Delta \omega_D) - CI_b]^2$

We propose a new RF powering scheme called **Transient Detuning**


- Use FE-FRT to change $\Delta \omega_D$
 - Reduced average RF power (by up to FoM/2)
 - Increased phase stability
 - Fixed RF bucket position







Exotic Cavities

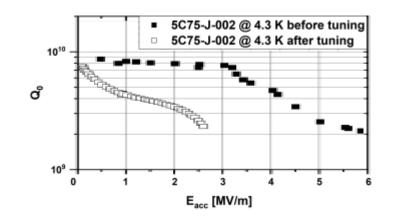
Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

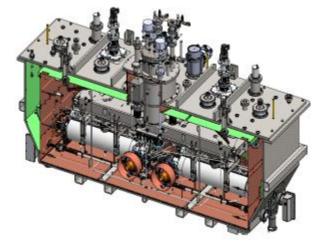
Normal Conducting


ERLs/low beam loading Storage Ring / high beam loading

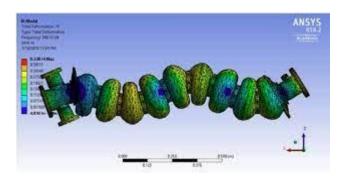
Exotic Cavities

Further Examples

Conclusion


Degradation of Nb₃Sn cavity performance after mechanical tuning

G. Eremeev et al., "RF Performance Sensitivity to Tuning of Nb $_3$ Sn Coated CEBAF Cavities," in SRF2019, Dresden,2019.


- Nb₃Sn performance degraded with mechanical tuning
- There may be a material science solution
- FE-FRT can provide alternate solution

TRIUMF's accelerator cryomodule

N. Muller et al., "TRIUMF'S INJECTOR AND ACCELERATOR CRYOMODULES" in SRF2015, Whistler, 2015.

TRIUMF's accelerating cavity microphonics simulation

S. Koscielniak, "STATUS AND ISSUES (MICROPHONICS, LFD, MPS) WITH TRIUMF ARIEL E-LINAC COMMISSIONING," in SRF2019, Dresden,2019.

- Cryomodules and cavities are already complicated.
- Often much effort and constraints also imposed by microphonics.
- What could we do if these were lifted?

Further Examples

HIE-ISOLDE

Introduction

Basic Principle

Ferro-Electric Material

FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Exotic Cavities

Further Examples

Conclusion

Thomas Hortala "LS2 Report: first beam inside the upgraded HIE-ISOLDE facility"

- 92% of max. energy has been achieved¹ limited by:
 - Field emission in some cavities
 - Microphonics when mechanical tuning system is on
 - FPC power limited to 200W
- FE-FRT could offer very elegant improvement by:
 - Allowing operation at lower bandwidths and critical coupling
 - reducing RF power required per cavity to ~20W
 - allowing max. energy with existing installed power and FPCs

Further Examples

EIC 197 MHz hadron crab cavities

- Hadron beam sweeps through broad range of frequency
- Must prevent revolution harmonics exciting high-impedance modes
- During injection, heavy damping or:
- ~950kHz tuning range required¹
 - Can the cavity take this much mechanical deformation maybe?
 - Could an FE-FRT be used probably not

Preliminary idea: Use an FE-FRT to quickly jump cavity mode resonances over revolution lines during abort gap.

Basic Principle

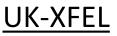
Ferro-Electric Material

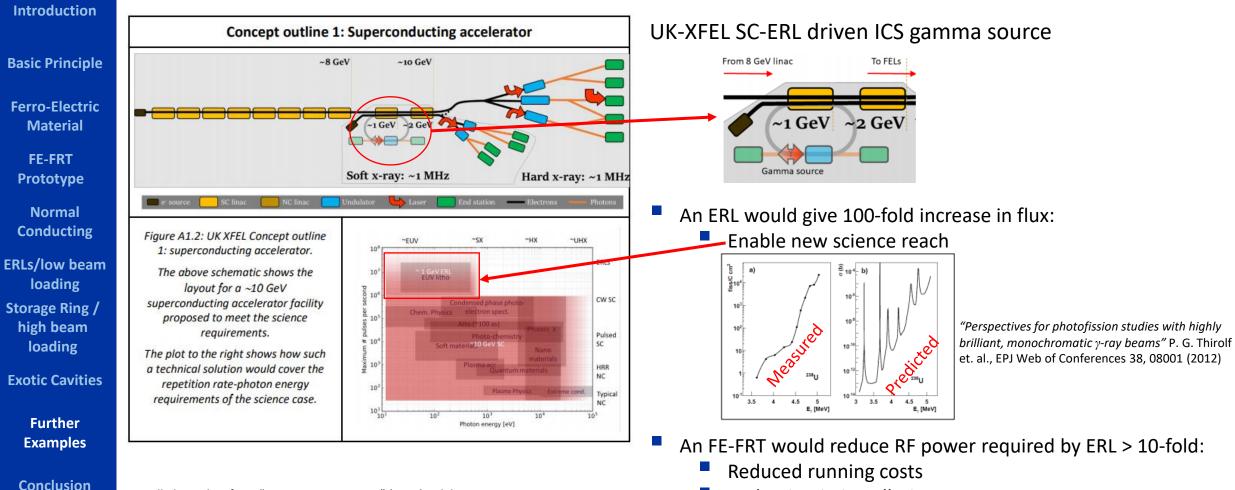
FE-FRT Prototype

Normal Conducting

ERLs/low beam loading Storage Ring / high beam loading

Bob Rimmer "SRF Challenges and R&D for the EIC"


Exotic Cavities


Further Examples

Conclusion

Further Examples

All plots taken from "UK XFEL Science Case" (2020). ed. by J. Marangos

Reduction in installation cost

Conclusion

- Introduction
- Basic Principle
- Ferro-Electric Material
- FE-FRT Prototype
- Normal Conducting
- ERLs/low beam loading Storage Ring / high beam loading
- **Exotic Cavities**

Further Examples

Conclusion

- Whatever you build you want an FE-FRT!
 - Low beam loading machines
 - High beam loading machines
 - Nb₃Sn or other exotic cavities
 - Normal conducting cavities
- Accelerator Examples just from this talk:
 - PERLE
 - PS
 - HL-LHC
 - UK-XFEL
 - HIE-ISOLDE
 - EIC

- FE-FRTs massively reduce RF power:
 - Important for societal acceptance of future HEP machines
- FE-FRTs improve physics reach
 - Increased luminosity
 - Improved beam quality
 - Next steps:
 - Reduce losses exhibited in prototype
 - Demonstrate high power operation
 - New FE-FRT for frequency switching under development at CERN

Thank you all for listening!

Any questions?