

SEARCH FOR RESONANT PRODUCTION FROM $hh \rightarrow bbbb$ IN ATLAS DETECTOR USING SUPERBOOSTED ANALYSIS RAIF BIN NORISAM^{1,2} NIKOS KONSTANTINIDIS^{1,2}

ABSTRACT

This project involves with searching for resonant production from $hh \rightarrow b\bar{b}b\bar{b}$ channel on ATLAS 139 fb^{-1} Run-2 data using Superboosted Analysis. The production cross section of *hh* in ATLAS is expected to be enhanced in Beyond Standard Model (BSM) compared to Standard Model. In this project, there are 2 different BSM theories involved which are Kaluza-Klein Graviton particle from Randall-Sundrum Model and Heavy Neutral Scalar particle from 2 Higgs Doublet Model (2HDM). Both theories expect the particle decays into hh. The $b\bar{b}b\bar{b}$ channel splits into 3 regime which are Resolved, Boosted and Superboosted. The Superboosted analysis covers the resonant mass range from 1.6 TeV $< m_X < 5$ TeV for both BSM theories. A Kinematic comparison with current Boosted regime has been performed in which the Superboosted regime has better signal efficiency around $m_X > 2$ TeV for both BSM theories. For expected limit, Superboosted regime has better sensitivity up to 34% around $m_X > 3$ TeV compared to Boosted regime.

INTRODUCTION

- In $hh \rightarrow b\bar{b}b\bar{b}$ analysis, two BSM theories that are currently studied in which expected to decay into Higgs pairs [1]: - Kaluza Klein Graviton from Randall-Sundrum Model - Heavy Neutral Scalar from 2 Higgs Doublet Model
- The $b\bar{b}b\bar{b}$ hannel is one of the main channel of interest due to it's large branching ratio which is around 33%
- Heavier Resonant Mass that decay into Higgs pairs are expected to decay into 4 collimated *B*-Hadron jets.
- The Superboosted analysis is a new analysis regime in $b\bar{b}b\bar{b}$ channel that focuses searching collimated $b\bar{b}b\bar{b}$ jets that decayed from Higgs pairs that originate from very heavy Resonant particle.

EVENT SELECTION

The higgs pair production are divided into leading Higgs (h_1) and subleading Higgs (h_2) candidates. Each of the Higgs candidates are reconstructed based on the kinematic selection below.

• Calorimeter jet:

 $p_T^{lead} > 450 \text{ GeV}$, $p_T^{subl} > 250 \text{ GeV}$ m > 50 GeV , $|\eta| < 2.0$, $\Delta \eta_{jj} < 1.3$, $m/p_T < 0.2$ Algorithm: Anti- $k_t R = 0.4$ Particle-Flow

• Track jet:

 $p_T > 5 \,\, {
m GeV}$, $|\eta| < \, 2.0$, $\Delta R^{\, calo, track} < \, 0.4$ Algorithm: Anti- k_t Variable Radius (0.02 < R < 0.4)

• Muon:

 $p_T > 5 \text{ GeV}$, $|\eta| < 2.0$, $\Delta R^{\ calo,muon} < 0.4$

TAG REGION DEFINITION

High Tag: Region of interest and background modelling

- **3b+**: 2b tagged trackjets on 1 calo jet 1b/2b tag trackjets on the other
- 2b split : 1b tagged trackjets on each calo jet

ANALYSIS REGION

regions are defined in the analysis:

• Signal Region (SR) : $X_{hh} < 1.6$ (Region of interest)

$$X_{hh} = \sqrt{\left(\frac{m_{h1} - 124 \text{ GeV}}{0.1m_{h1}}\right)^2 + \left(\frac{m_{h2} - 115 \text{ GeV}}{0.1m_{h2}}\right)^2} \quad (3)$$

idation Region (VR) : $R_{hh}^{VR} < 33 \text{ GeV}$

• Vali

$$R_{hh}^{VR} = \sqrt{\left(m_{h1} - 124 \,\,\text{GeV}\right)^2 + \left(m_{h2} - 115 \,\,\text{GeV}\right)^2} \quad (4)$$

• Control Region (CR) : $R_{hh}^{CR} < 58 \text{ GeV}$

 $R_{hh}^{CR} = \sqrt{(m_{h1} - 134)}$

Low Tag: Use for background modelling

- **2b 1**+ : At least pass 2 b-Tagged (on either 2 jets) and have total of at 3/4 trackjets on both jets.
- 1b 1 : pass only 1 b-Tagged (on either 2 jets) and have only 1 trackjet on each jets.

UNIVERSITY COLLEGE LONDON¹, ATLAS, CERN²

The region of interest for this analysis are in the elliptical region within $X_{hh} < 1.6$ in $m_{h1} - m_{h2}$ plane. There are 3 different

$$(\text{GeV})^2 + (m_{h2} - 125 \,\text{GeV})^2$$
 (5)

SUPERBOOSTED BACKGROUND MODELLING AND ANALYSIS RESULTS

Background Modelling:

- Main background contribution:
- QCD multijet $-t\bar{t}$
- Total background on each tag region (N_{tot}^{ν}) are modelled from calculating the normalization factors for QCD (μ_{qcd}) and $t\bar{t} (\alpha_{t\bar{t}})$ contributions
- The normalization factors are derived from data and MC driven in low-tag region (for μ_{qcd}) and high tag region (for $\alpha_{t\bar{t}}$
- The predicted background on VR and CR are compared with High-tag region data on VR and CR for validation.

$$N_{tot}^{\nu} = \mu_{qcd} (N_{data}^{\nu-1} - N_{t\bar{t}}^{\nu-1}) + \alpha_{t\bar{t}} N_{t\bar{t}}^{\nu}$$
(1)

Tag Region	μ_{qcd}	$lpha_{tar{t}}$
3b+	0.0930 +/- 0.0057	0.9166 +/- 0.2339
2b Split	0.0465 +/- 0.0018	0.8018 +/- 0.0740

Kinematic Reweighting

To perform better background m_{hh} modelling, a kinematic reweighting applied to several kinematic variables on calorimeter jets and track jets. These reweighting procedure only applied on low-tag region. The kinematic reweighting are performed in several iterations using cublic splines until the ratio of the kinematic distributions between high tag and low tag region converges to 1.

m_{hh} Smoothing

In order to reduce statistical fluctuations and better modelling on high m_{hh} region, a smoothing function is applied on predicted m_{hh} distribution. The nominal function that is used for the smoothing is shown below.

$$f(x) = p_0 \frac{1 - x}{p_1 x} e^{-p_2 x}, \quad x \equiv \frac{m_{hh}}{13 \, TeV}$$
(2)

CONCLUSION AND REFERENCES

Superboosted analysis obtains more signal than Boosted analysis around resonant mass $m_X > 2$ TeV. For expected limit, Superboosted analysis has better sensitivity than Boosted analysis up to 34%.

References: [1] ATLAS Collaboration, Search for resonant pair production of Higgs bosons in the $b\bar{b}b\bar{b}$ final state using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Submitted to Phys. Rev. D. arXiv:2202.07288v1

The discriminant that is considered for limits in this analysis is m_{hh} . The upper limits are derived from statistical tests via log-likelihood ratio. The test statistic q_{μ} value are taken to obtain the ratio of probabilities of Signal and Background to Background ratio based on 95% Confidence Interval $CL(\mu)$. The value of the signal normalization μ are varied in each mass points until the $CL(\mu)$ reaches 0.05. The obtained μ value will be taken into account for limits and convert into cross section for $hh \rightarrow b\bar{b}b\bar{b}$. The expected limits are derived using Asimov data with background only hypothesis.

Kinematic Comparison with Boosted Analysis

- Superboosted jets tend to get better diHiggs signal efficiency at high resonant mass. (\approx 2TeV)
- Boosted jets tend to construct larger jet mass as jet p_T increases.
- Superboosted jets keep the jet masses lower at high p_T . Hence, better jet mass resolution around signal region.
- Benefit for very high Lorentz boost particle decays.

Limit Setting

