

Classification of the ${}^{13}C(\alpha,n){}^{16}O$ background in the SNO+ antineutrino analysis

Charlie Mills University of Sussex

SNO+

- Main goal: search for neutrinoless double beta decay in ¹³⁰Te [1].
- Secondary goals: low-energy solar neutrinos [2], reactor and geo anti-neutrinos, supernova signals, nucleon decay [3] and axion searches.

40 m tall cavity Four phases, with different filled with UPW detector media: ultra-pure water (UPW), partial fill - pure scintillator (365 t) and UPW, pure scintillator (780 t), **Te-loaded scintillator.** 6 m radius acrylic sphere filled with liquid scintillator

2 km below surface at SNOLAB

Antineutrino search

- Detection of reactor antineutrinos and geoneutrinos via inverse beta decay lacksquare(IBD) in liquid scintillator.
- Sensitivity to Δm_{21}^2 and θ_{12} .
- Approximately 60% of flux from nearby (< 350km) reactors.
- Dominant background are
- Reactor IBD Process 1: Proton recoil $- {}^{13}C(\alpha, n)^{16}O$ — Geoneutrino IBD _ Process 2: ¹²C inelastic scattering 2.5 **SNO+** Preliminary Process 3: 1.5 De-excitation of ¹⁶O \exists

Data-taking in partially filled phase Apr 2020 – Oct 2020.

~9500 photomultiplier tubes (PMTs)

Event topologies

Reactor IBD and ${}^{13}C(\alpha, n){}^{16}O$ manifest as coincident prompt and delayed events.

 $^{13}C(\alpha,n)^{16}O$ interactions that mimic reactor IBD signal.

Time profiles

Differentiation between reactor IBD and ${}^{13}C(\alpha, n){}^{16}O$ events < 3.5 MeV

Photon arrival time used to discriminate reactor IBD and ${}^{13}C(\alpha, n)^{16}O$ events. γ 's and protons have different scintillation time profiles. Neutron can scatter off many protons on order of 10s of ns. Proton time profile tuned using neutrons from ²⁴¹Am⁹Be source. Residual hit time = t_{hit} - t_{fit} - t_{tof}

Low energy prompt events are not identical \rightarrow opportunity for discrimination. High energy prompt events look very similar (γ) \rightarrow no discrimination.

Verification

Partial fill phase

- Reactor IBD candidate events selected in dataset of 130 days livetime.
- Event classification performed and compared with MC prediction.
- Agreement with expectation, confirmation of methodology. •

6

- t_{hit}: time registered by PMT
- t_{fit}: reconstructed event time
- t_{tof}: photon time of flight from reconstructed event position to PMT

Event classification

Likelihood ratio test to classify events using time of flight corrected PMT hit time. $\Delta \log(L) = \log(L_{IBD}) - \log(L_{(\alpha,n)})$

Reject 99% ${}^{13}C(\alpha, n){}^{16}O$ for 48% reactor IBD sacrifice.

Prompt events below 3.5 MeV in partial fill geometry

References

[1] The SNO+ Experiment, The SNO+ Collaboration, 2021 JINST 16 P08059 [2] Measurement of the ⁸B Solar Neutrino Flux in SNO+ with Very Low Backgrounds, The SNO+ Collaboration, Phys. Rev. D 99 012012 (2019) [3] Search for invisible modes of nucleon decay in water with the SNO+ detector, The SNO+ Collaboration, Phys. Rev. D 99, 032008 (2019)

Reject 34% ${}^{13}C(\alpha, n){}^{16}O$ for 1% reactor IBD sacrifice.

identified.

Summary and outlook

- Successful differentiation of reactor IBD and ${}^{13}C(\alpha,n){}^{16}O$ events in low energy regime confirmed.
- Development of oscillation fitting techniques to include this event classification ongoing.
- Impact to sensitivity to oscillation parameters upcoming.
- Dedicated proton timing calibration in pure scintillator phase planned.

Acknowledgements

This work was supported by the STFC, UK