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1. Motivations
This poster reports on the exposure of cast 

scintillator, produced in-house, to gamma ray 

sources. Rapid manufacture allows fast-

prototyping of novel geometries for deployment in 

a limited borehole volume.

The low-cost scintillator will be deployed in 

mixed-field neutron-gamma borehole 

detectors, measuring the response of a borehole 

formation to a pulsed neutron generator (PNG). 

Sealed sources in common use such as AmBe or 

Cf-252 constantly emit neutrons, and are a 

security concern [1]. PNGs introduce timing 

information from neutron pulses, and can be 

turned off when not in use [2].

3. Methods
• Scintillator samples of approximately 25 cm3 

• Coupled to photomultiplier tube (PMT) in dark 

box as in Fig 4

• Assembly then exposed to Cs-137 and Co-60 

gamma ray sources

• All scintillation attributed to gammas – βs 

shielded

• Exposure time of 20 minutes

• Data recorded with Multichannel Analyzer 

(MCA) 

2. Compton Scattering in 

Plastic Scintillators
• Co-60 and Cs-137 gamma sources below [3]

• Compton scattered electron energy inferred by 

equation below [4]
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Figure 2: Prepared scintillator under UV illumination 

5. Discussion
• Calibrate channels vs energy with three known 

gamma energies

• However, no discrimination between two Co-60 

gammas – average energy used

• Poor energy resolution is expected of plastic 

scintillators – low Z, no full-energy peak

• This scintillator will be deployed in boreholes to 

detect neutron inelastic/capture gammas

Figure 4: Sample coupled directly to PMT face (left) placed 
in light tight assembly (right)

4. Results

• Compton Edge (CE) selected at half-Compton 

maximum (CM) – though more precise schemes 

exist as discussed in [6]

Figure 5: Comparison of 20 minute exposures to Cs-137 (19.6kBq) 
and Co-60 (20.9kBq) with CM and CE marked – moving average 

used for edge location

Figure 6: Approximate calibration of channel number to 
energy – poor discrimination of Co-60 gammas 

6. Borehole Detectors & 

Thermal Neutron Detection
• Borehole “interrogated” by neutron flux

• Thermal neutrons indicate H and Cl content

• Inelastic and capture gammas indicate 

elemental composition

• Foils manufactured using mixture of Boron 

Nitride and Zinc Sulfide powder

• BN:ZnS foils [7], coupled to wavelength shifter 

as in Fig 7

Figure 7: Capture foils coupled to wavelength shifter provide a 
convenient, low-cost method of thermal neutron detection
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Cs-137 662 478

Co-60 1170, 1330 960, 1116

Figure 3: Scintillators with different dopant concentrations 
were cast in a 24 hour period
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Figure 8: (a) Testing of thermal neutron foils on PMT face, 
(b) A typical neutron pulse from the BN:ZnS foils – ZnS decay 

time of several microseconds
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Figure 1: Organic scintillation process [5], the Compton 
scattered electron will induce ionization


