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Hyper-Kamiokande Simulation Geometry

Based in Gifu Prefecture, Japan * Input data simulated using Geant4-based detector response

A cylindrical water Cherenkov detector, the successor of Super-Kamiokande simulation software WCSim

(Super-K) experiment e The ID contains 18952 20-inch PMTs and 4716 mPMTs in the
Designed to be 8 times more fiducial volume than Super-K (220k tons), its following pattern

current design has a diameter of 68 meters
and a height of 71 meters

anned to house ~20,000 20-inch (50-cm)
notomultiplier tubes (PMT) and additional
noto-coverage from multi-PMTs (mPMT) [1]
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Research including neutrino oscillation
. . | | Fig 2: Schematic diagrams showing Hyper-K
and BSM phySICS (proton decay) Fig 1: A CAD drawing of the multi-PMT module T simulation geometry

Simulated Data

In Super- and Hyper-K, fiTQun reconstructs particle vertex, direction, Electron and muon energy: uniformly distributed 0 to 1 GeV

momentum, etc. simultaneously by maximizing the likelihood function [2] above their Cherenkov thresholds; 7™ energy: uniformly
i-th PMT's charge, time distributed O to 1 GeV above 4 times the electron Cherenkov
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Initial direction of all particles: isotropically distributed

PointNet
* Anovel deep Neural Network (NN) that consumes point cloud IR
(unordered point sets in 3D) [3], thus easy to adapt to other detector t]afx[y]z[}L
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ro ¢ PointNet learns symmetric functions on point clouds, as the order of PointNet MLP (1x1 convolution
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Fig 3: A Hyper-K event in the point cloud form 3 ] p0| nts fOr output Segmentation Network

Fig 4: Schematic diagrams displaying the structure of the PointNet
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 Receiver Operating Characteristic (ROC) curve displays the trade-off between signal efficiency and background rejection rate with respect to different chosen
threshold values

* Signal efficiency: AKA true positive rate, percentage of the signal correctly identified;
Background rejection: AKA false positive rate, percentage of background falsely identified as signal

* Preliminary results show that PointNet’s performance is on par with fiTQun for electron/muon discrimination
 PointNet outperforms fiTQun for electron/ m° separation
 Atrained PointNet is much faster than fiTQun for PID

A possible reason why PointNet performs better without mPMT signal is due to the naive implementation in the PointNet model, where the 20-inch and 3-inch
PMT signals are treated identically. By adapting the network to allow the PMT types to be treated differently, it is hoped that the performance will improve

* Currently conducting studies on the efficacy of electron/gamma separation using both tools
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