
• Receiver Operating Characteristic (ROC) curve displays the trade-off between signal efficiency and background rejection rate with respect to different chosen 
threshold values

• Signal efficiency: AKA true positive rate, percentage of the signal correctly identified;
Background rejection: AKA false positive rate, percentage of background falsely identified as signal

• Preliminary results show that PointNet’s performance is on par with fiTQun for electron/muon discrimination
• PointNet outperforms fiTQun for electron/ 𝛑𝟎 separation
• A trained PointNet is much faster than fiTQun for PID 
• A possible reason why PointNet performs better without mPMT signal is due to the naïve implementation in the PointNet model, where the 20-inch and 3-inch 

PMT signals are treated identically. By adapting the network to allow the PMT types to be treated differently, it is hoped that the performance will improve
• Currently conducting studies on the efficacy of electron/gamma separation using both tools
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• Based in Gifu Prefecture, Japan
• A cylindrical water Cherenkov detector, the successor of Super-Kamiokande

(Super-K) experiment
• Designed to be 8 times more fiducial volume than Super-K (220k tons), its 

current design has a diameter of 68 meters 
and a height of 71 meters

• Planned to house ~20,000 20-inch (50-cm) 
Photomultiplier tubes (PMT) and additional 
photo-coverage from multi-PMTs (mPMT) [1]
in the inner detector (ID), and ~8,000 
3-inch (8-cm) PMTs in the outer detector (OD)

• Research including neutrino oscillation
and BSM physics (proton decay)

Hyper-Kamiokande

Fig 1: A CAD drawing of the multi-PMT module

50 cm

• Input data simulated using Geant4-based detector response 
simulation software WCSim

• The ID contains 18952 20-inch PMTs and 4716 mPMTs in the 
following pattern

Simulation Geometry

Fig 2: Schematic diagrams showing Hyper-K 
simulation geometry

• In Super- and Hyper-K, fiTQun reconstructs particle vertex, direction, 
momentum, etc. simultaneously by maximizing the likelihood function [2]

FiTQun

• Electron and muon energy: uniformly distributed 0 to 1 GeV 
above their Cherenkov thresholds; 𝜋0 energy: uniformly 
distributed 0 to 1 GeV above 4 times the electron Cherenkov 
threshold

• Initial locations of all particles: uniformly distributed in the tank
• Initial direction of all particles: isotropically distributed

Simulated Data

Fig 3: A Hyper-K event in the point cloud form 

PointNet

Fig 4: Schematic diagrams displaying the structure of the PointNet

Results

• A novel deep Neural Network (NN) that consumes point cloud 
(unordered point sets in 3D) [3], thus easy to adapt to other detector 
geometries

• For the application to Hyper-K reconstruction, each hit PMT is a point 
with PMT 3D position, time, charge (Fig. 3)

• PointNet learns symmetric functions on point clouds, as the order of 
points should be irrelevant

• Convolution-like operations act on each 
point’s position, charge and time to linearly 
transform them, e.g., rotate all input vectors

• Feature transform allows global 
information to affect individual points

• Single down-sampling layer collapse 
all points for output
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