

# Electron calibration for the Level-1

## Calorimeter trigger at the ATLAS Experiment



Mihaela Marinescu University of Birmingham

#### 1. Introduction



- As the luminosity is increased for Run-3, controlling trigger rates while keeping the physics signal efficiency high is a priority at the ATLAS experiment
- A new system of feature extractor modules will be added to the L1Calo system for Run-3, including the electromagnetic feature extractor (eFEX), whose function is to identify  $e/\gamma$  and  $\tau$  candidates using data from the EM and hadronic calorimeters
- The eFEX will use higher granularity digital information from the LAr detector, to produce more precise trigger objects, with new *e*/*γ* algorithms to analyse shower shapes and provide discrimination power from jet background

#### 2. Motivation

- The ratio between the offline electron  $p_T$  and trigger object (TOB)  $E_T$  is shown in the plot below, using a  $Z \rightarrow e^+e^-$  sample
- Ideally, this ratio would be constant throughout the η region, and equal to 1

### 3. Calibration

- New trigger tower configuration (see figure below) allows corrections to be added to the E<sub>T</sub> summation
- Formula for calibration strategy, inspired by [2]:
- A position-dependent calibration procedure is presented for the electron object E<sub>T</sub>, following the cluster reconstruction
- This calibration can substitute the currently applied position dependent trigger energy thresholds



#### 4. Calibration Results



$$E_{T,cluster} = a \cdot E_{T,PS} + b \cdot E_{T,1} + c \cdot E_{T,2} + E_{T,3}$$

- ► Using 100k  $Z \rightarrow e^+e^-$  events, performed minimisation to extract parameters a, b and c in  $|\eta|$  bins with width 0.1 by minimising  $\frac{(E_{T,cluster} p_T^{off})^2}{\sigma^2}$
- Pre-sampler layer exists only in  $|\eta| < 1.8$  region
- Parameters a, b and c estimated with resolution 1/128, to emulate the resolution available at the hardware-level



Image from [3]

#### 5. Efficiency

- To test the effect of the calibration, efficiency turn-on curves are obtained for calibrated/uncalibrated electrons, at thresholds giving the same background rate
- ▶ Rates are calculated using 100k  $Z \rightarrow e^+e^-$  and 1M dijet background events, normalising the rates to the cross section for each sample
- Calibration gives sharper turn-on curve

• Applying the calibration to the  $Z \rightarrow e^+e^-$  sample improves the energy response, especially in the barrel region ( $|\eta| < 1.475$ )

#### References

[1] ATLAS Collaboration, Design and test performance of the ATLAS Feature Extractor trigger boards for the Phase-1 Upgrade, ATL-DAQ-PROC-2016-024.
[2] ATLAS Collaboration, Combined Intercalibration and Longitudinal Weight Extraction for the ATLAS Liquid-Argon EM Calorimeter, ATL-LARG-2004-012.
[3] ATLAS Collaboration, Technical Design Report for the Phase-I Upgrade of the ATLAS TDAQ System, ATL-DAQ-PROC-2016-024.



#### mihaela.marinescu@cern.ch