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Beyond-Standard Model (BSM) events look different from other 

events in chosen kinematic variables, lending them unique

topologies in networks. 

Graph network analysis can:

• Treat discrete multi-dimensional data without estimators of  

continuous functions from theory.

• Encode similarities and differences between unordered sets in 

pairwise connections. 

• Reveal rich relations or interactions between datasets.

Features of  complex graphs: 

• Clustered vs random

• Central vs fringe

• Filament structures

• Connected paths

We quantify these properties by calculating network metrics, 

conveniently defined by graph theory. 

The network metrics can be local (evaluate per event) or global (a 

network average). We focus first on local metrics to perform an 

event-by-event analysis, giving a value for each event like traditional 

analysis variables. We use simulated LHC collision events. 

Network metrics target a range of features, typically selecting 

unique topologies from BSM events, which are rarer and more 

complex.

Nodes = events

Edges = similarity

How do we optimize BSM analyses?

• Additional observables,

• Model-independence,

• Targeting rare, complex decays.

Calculating graph network variables 

contributes additional discrimination between 

signal and background, without relying on 

optimization for a chosen model. 

Comparing events instead of  treating them in 

isolation reveals complex structures. 

Graph network definitions: 

• Node: an N-dimensional 

datapoint.

• Edge: an indicator that 

two nodes in the N-

dimensional space are 

connected.

Graph tools can gain sensitivity to anomalous event 

topologies.

Does SUSY have friends? A new 
approach for LHC event analysis

Our analysis: a supersymmetry search example

Therefore, we require definitions for:

1. Locations of  nodes (LHC events) in N-dim space,

2. Distances between all possible pairs of events in the dataset,

3. A binary measure of  “similarity” between two nodes/events.

Edges are information sharing. 

Aim: to compare signal-plus-background 

networks with background-only networks.

Problem: networks cannot scale to contain 

enough events to represent the required

differences in cross-sections. 

Background processes are simulated with large 

differences in weights. 

Solution: weight factors must appear in our

networks.

Graph tools identify patterns in SM-only vs SM+BSM network 

connections. 

Network analysis for BSM searches

Choose to link pairwise  

events with d > 7.

For example, to test a toy dataset comprised of  10,000 ‘BSM’ and 

10,000 ‘SM’ events in a 5-dimensional simulated kinematic space, we 

calculate ‘cityblock distance’:

Degree centrality

High degree = large number of  links. 

Closeness centrality

High closeness = smaller average number

of links to all other nodes. 

Betweenness centrality

High betweenness = high probability that a 

shortest path passes through this node.

• Purple nodes: top quark 

production events.

• Blue nodes: stop quark

production events.

Electroweakino searchStop quark search          +

6D kinematic graph space:

• Leading jet transverse 

momentum,

• Missing transverse energy,

• Minimum transverse mass (of  

the two b-jets),

• Minimum invariant mass of the

lepton and two b-jets,

• Scalar sum of  the transverse 

momenta, 

• Asymmetric mT2. 

5D kinematic graph space:

• Missing transverse energy,

• Transverse momentum of the Z

boson,

• Azimuthal angle between the 

two leptons associated with the 

Z boson,

• Minimum transverse mass,

• Azimuthal angle between the Z 

boson and lepton from the W 

boson.

Network metric sample distributions and their definitions

Node weights are non-standard, 

but the only viable option. 

We show discrimination between signal and background network

metric distributions in several new metrics. For example, below is the 

closeness calculated from the cityblock distance in our electroweak 

study. 

Ideas are welcome to guide our choice of  BSM model as we move to 

ATLAS datasets. 

We are also interested in optimizing graph techniques for large

datasets. Graph calculations are computationally limited, and rely on 

node-splitting and node-merging algorithms to accurately represent 

large LHC datasets with only a subset of  events. We are testing in 

what contexts these are reliable, for every network metric. 

Further work 

Results from network calculations

Where W is the sum of  all node weights 

over all events i.  

Node-weighted degree 

for node v:
Node-weighted closeness:

Where d is the number of  links on a shortest path. 

Node-weighted

betweenness:

Where n is the number of  shortest paths between 

randomly chosen nodes a and b.

An example cut and count yield using the above distribution:

Above shows an example boosted decision tree, which improved 

performance when trained on degree centrality in addition to standard 

kinematic variables. Performance increased from a Zbi of  3.63 to 3.98. 

Benefits:

• A wide range of new network variables are available, increasing the 

likelihood that some are useful discriminators. 

• We chose seven distance metrics to define 7 x 8 = 56 new 

variables.

• Cuts can be placed on a combination of  standard variables and 

network metrics to increase signal yield. 

In addition: we can combine network metrics with 

machine learning, e.g. in a boosted decision tree trained 

on standard variables + network metrics. 

Binomial significance, 

as from a number 

counting experiment


