OIS
55

S
i

THE UNIVERSITY

ofADELAIDE

UNIVERSITY OF
CAMBRIDGE

Network analysis for BSM searches Graph tools can gain sensitivity to anomalous event

topologies.

Graph network analysis can:

e Treat discrete multi-dimensional data without estimators of Graph tools identify patterns in SM-only vs SM+BSM network

. . o connections.
continuous functions from theory. RS

For example, to test a toy dataset comprised of 10,000 ‘BSM’ and

How do we obtimize BSM analvses? 10,000 ‘SM’ events in a 5-dimensional simulated kinematic space, we
P R calculate ‘cityblock distance’:

e Additional observables, dcity — Z?:l | u; — V;|
* Model-independence,

* Targeting rare, complex decays.

* Encode similarities and differences between unordered setsin . =~ "% = ==

. . . E== )
pairwise connections. \

e Reveal rich relations or interactions between datasets.

. . 0.008
optimization for a chosen model.
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Beyond-Standard Model (BSM) events look different from other IS Calculating graph network variables é | | |
events in chosen kinematic variables, lending them urdque © % %h,& G contributes additional discrimination between U_E 0.01 : Signal
topologies in networks. N AR signal and background, without relying on & : Background
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Graph network definitions: 0.006

Comparing events instead of treating them 1n . Node: an Nedimensional

. . _ e P .-_,--;-.__ S gy *. 0.004
1solation reveals complex structures. __ e datapoint. Node -

* Edge: an indicator that N ‘ ‘ 0.002

two nodes 1in the N-

Features of complex graphs:

R S . . 0 — | PR I SR SR SR U [ TR S SR S N S S T !
e Clustered vs random > «_::_:___._.E:__;;{{;ﬁ::;._1_:;;_-___;_ - dimensional space are \ 0 5 10 15 20 25 Ay,
* Central vs fringe I —= ﬁw | connected. ‘ Edge 0 1 0 I
* Filament structures o . o Choose to link pairwise ; ;
+  Connected paths Theretore, we require definitions for: ‘ events with d > 7. 1 1
We quantity these properties by calculating network metrics L. Logations oif nodies (ILISIC evemis) i N-dm sjpace 0 10 0
S - ﬂy defined by eranh }t,heor 5 ’ 2. Distances between all possible pairs of events in the dataset, Alm: to compare signal-plus-background
Y y &5EP > 3. A binary measure of “similarity” between two nodes/events. metwoss with badkgrenmnd-omly networks.
Problem: networks cannot scale to contain _1 0 0 ... 0_
The network metrics can be local (evaluate per event) or global (a enough events to represent the required _
network average). We focus first on local metrics to perform an Distance metric: the chosen path through the space, for differences in cross-sections. Square, symmetric
event-by-event analysis, giving a value for each event like traditional example: ' = ’ Background processes are simulated with large adjacency matrix
analysis variables. We use simulated LHC collision events. N _ - differences in weights. o
m Euclidean distance: deuc = /> i1 (Ui — vi)?. Solution: weight factors must appear inour 4 & @ Q
- ; : 1 _ u-v

Network metrics target a range of features, typically selecting o y lk_Coslme ?I:S_t‘::ce' dc?s =1 N t\/u-u\/—»lf)-vt' . networks.
unique topologies from BSM events,qvhich are rarer and more TS SHEL. SRS I CStanes BEtiesi S Networks provide two options:
complex connected nodes. -

P m Add weights to the edges

A igh h
Nodes = events : : : m Add weights to the nodes
_ o Edges are information sharing.

Edges Node weights are non-standard,

similarity & o
#7K \AN, but the only viable option.
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Network metric sample distributions and their definitions
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* Purple nodes: top quark
production events.
* Blue nodes: stop quark

3x 1071
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‘ ducti ts. | | .
o Pro@uetion Cvents Degree centrality Closeness centrality Betweenness centrality
High degree = large number of links. High closeness = smaller average number High betweenness = high probability that a
. of links to all other nodes. shortest path passes through this node.
Node-weighted degree o 2oieNg Wi o] . tted ol e c 0.1 .
for node y = W ode-weighted closeness: = i , Node-weighted BCH = (0, (1) /%) "5 < [0, W2/ w, ]
betweenness:
Where W is th t all nod ight Where d is the number of links on a shortest path. .
cre S TIE SHITOL df NOCE WEISHS N P Where 7 1s the number of shortest paths between
p ¢ over all events 2.
randomly chosen nodes a and 0.
= - 1
. m 4| —e— Electroweak SUSY signal B
Results from network calculations ~ 100 2 oo 9 150 fo
S 10° e
We show discrimination between signal and background network 0 , = —a— I
metric distributions in several new metrics. For example, below is the 10° e -
closeness calculated from the cityblock distance in our electroweak 10 E_ —a—
Stop quark search + Electroweakino search study. % —4— _._—'—_.—_'_:.:_'_—-—
- 1 = —o— N e
( \/ o0 JF Electroweak SUSY signal 150fb™" = .
6D kinematic graph space: 5D kinematic graph space: 2 107 —— Wz e 107" = e ——
. . c — =
* Leading jet transverse * Missing transverse energy, S 10° M 4 _.'_ Uppe; — tl.*.ut e m Ea—
momentum, * Transverse momentum of the Z L - e 3|~ Lowerbound cut .
* Missing transverse energy, bospn, 107 = _‘_—n——‘—_‘__‘r N2 - .
* Minimum transverse mass (of * Azimuthal angle between the 10 E i A 1 )
the two b-jets) two leptons associated with the & T e T e o
o . > — —— —— —— BT S VU ST DU N VUSSR W ST T I PE T I SR P e
e Minimum invariant mass of the 7. boson, 1~ T e o 23.5 -0.4 3 0.2 -01 0 01 02 03 04 0.5
lepton and two b-jets, * Minimum transverse mass, § = —o] BDT Score
* Scalar sum of the transverse * Azimuthal angle between the Z 10 = | | | | | | | | Above shows an example boosted decision tree, which improved
momenta, boson and lepton from the W 1.5 = Upper bound cut performance when trained on degree centrality in addition to standard
. —.— o Lower bound cut . . . . :
* Asymmetric mT2. boson. 1 : i . kinematic variables. Performance increased from a Zb1 ot 3.63 to 3.98.
; +
N
0.5 +++
Benefits: . Further work
. . . . . —.———.—* ..... D W S G G W G W W GNP S  l E R
. A Wl.de range of new network Vailrlable.s are available, increasing the 00 0.05 0_1i 6_1 g ‘0_2* 62; ‘0_3" 635 "0_ 4 045 ?Y 5
*,Ci . .
hkel\li;ooi that somedz.lre useful dls.crlmlr(;a'}ors. B CCgc, [deas are welcome to guide our choice of BSM model as we move to
¢ chose seven distance metrics to deline 7X 8 = 56 new An example cut and count yield using the above distribution: ATLAS datasets.
variables.
* Cuts Callz be pl.aced on a Comb}natli)n.olf standard variables and Eﬂ?glglflg;l’g?) e o2 | ;;fsijg:ngl = évsb;c};g:r{iu;dg 129@% We are also interested in optimizing graph techniques for large
network metrics to increase signal yield. v W02 Chpey = U ' ' ' ' ' datasets. Graph calculations are computationally limited, and rely on
o In addition: we can combine network metrics with Binomial significance, node-splitting and node-merging algorithms to accurately represent

machine learning, e.g. in a boosted decision tree trained T o large LHC datasets with only a subset of events. We are testing in
on standard variables + network metrics. counting experiment what contexts these are reliable, for every network metric.




