

The COMET *μ-e* Experiment:

Preparing for Real Data from BSM Physics

IOP HEPP & APP Annual Conference

OMET

Roden Derveni

Imperial College London - HEP

April 2022

Meeting Location: Rutherford Appleton Laboratory

Email: rd1519@ic.ac.uk

ROYAL SOCIETY

Science and Technology Facilities Council

- The COMET Experiment
- Coherent $\mu \rightarrow e$ Conversion
- ICEDUST Simulations
- Validating Changes
- Data-Driven Validations

 The COMET experiment at J-PARC, Japan, aims to observe the BSM charged lepton flavour violating process of neutrinoless μ-e conversion

- Increase sensitivity by > O(10⁴)
- low-energy backgrounds
- We use a **novel design** across **two main phases**

 The COMET experiment at J-PARC, Japan, aims to observe the BSM charged lepton flavour violating process of neutrinoless μ-e conversion

- Increase sensitivity by > O(10⁴)
- low-energy backgrounds
- We use a novel design across two main phases

 The COMET experiment at J-PARC, Japan, aims to observe the BSM charged lepton flavour violating process of neutrinoless μ-e conversion

- Increase sensitivity by > O(10⁴)
- low-energy backgrounds
- We use a **novel design** across **two main phases**

 The COMET experiment at J-PARC, Japan, aims to observe the BSM charged lepton flavour violating process of neutrinoless μ-e conversion

- Increase sensitivity by > O(10⁴)
- low-energy backgrounds
- We use a novel design across two main phases

OMET

Data-Taking Timeline

Neutrinoless μ -e Conversion

 A muon is captured by atom, falls to 1s shell, decays into an electron – LFV

OMET

- Massive-neutrino SM extension, requires interchange of a W-boson
- Neutrino mass GIM suppression ~ O(10⁻⁵⁴)

μ-e conversion in the massive neutrino SM extension

- A muon is captured by atom, falls to 1s shell, decays into an electron – LFV
- Massive-neutrino SM extension, requires interchange of a W-boson
- Neutrino mass GIM suppression ~ O(10-54)
- BSM predictions of **neutrinoless** *μ-e* conversion;
- Rates may be as high ~ O(10⁻¹⁵) !

Imperial College

London

- Finding Charged LFV is a sign of new physics
- Provides a model-independent search

μ-e conversion in the massive neutrino SM extension

Neutrinoless *µ-e* conversion in the BSM

ΟΜΕΤ

Needing Physics Validations

Muon beam exiting through the back of the detector solenoid

Double differential cross section of pion production across different hadron production codes

0.8

 Reduces the comparisons of all changes into a single set of histograms, quantifying differences statistically

OMET

• Relative difference of each bin

 $\sigma_i \simeq rac{\Delta_i}{\delta \Delta_i} = rac{a_i - b_i}{\sqrt{(\delta a_i)^2 + (\delta b_i)^2}}$

• Most have no significance in differences, or are in-line with expectations

• Reduces the comparisons of all changes into a single set of histograms, **quantifying differences statistically**

OMET

• Relative difference of each bin

 $\sigma_i \simeq rac{\Delta_i}{\delta \Delta_i} = rac{a_i - b_i}{\sqrt{(\delta a_i)^2 + (\delta b_i)^2}}$

 Most have no significance in differences, or are in-line with expectations

 Reduces the comparisons of all changes into a single set of plots, quantifying differences statistically

OMET

• Relative difference of each bin

 $\sigma_i \simeq rac{\Delta_i}{\delta \Delta_i} = rac{a_i - b_i}{\sqrt{(\delta a_i)^2 + (\delta b_i)^2}}$

Most have no significance in differences, or are in-line with expectations

 Reduces the comparisons of all changes into a single set of plots, quantifying differences statistically

OMET

• Relative difference of each bin

 $\sigma_i \simeq rac{\Delta_i}{\delta \Delta_i} = rac{a_i - b_i}{\sqrt{(\delta a_i)^2 + (\delta b_i)^2}}$

Most have no significance in differences, or are in-line with expectations

(and many, many more...)

OMET

Internal Simulation Validations

- Some differences are within expectations
 - $< 3\sigma$ bin heights
 - No consistency or 'shape'
 - Differences in-line with physics changes
- Comparison of muon momentum
 - We see nothing alarming or noteworthy
 - No indication of any unexpected effects on processes related to μ-e

 μ^{-} momentum bin contents from a Geant4.10.1.p03 distribution minus that of Geant4.10.4.p03

Internal Simulation Validations

• Others show some large, very distinctive change that hints towards a drastic difference in the physics handling

OMET

- Comparing pion momentum
 - Energy ranges at which certain physics models becomes active was changed – it's okay!

 π^{-} momentum in Geant4.10.4 vs 10.7

OMET

Internal Simulation Validations

- Less innocent changes: sharp reduction in low energy muons instead due to a Geant4 bug
 - Will silently create and kills low-energy, unphysical hadrons crossing different volumes, which drastically changes propagated results
 - A big problem that only shows as a 5% reduction in particles...
- Unofficial compilation/discussion of Geant4 checks with Low-E focus: <u>https://www.hep.ph.ic.ac.uk/~rd1519/Geant4/</u>

 μ^{-} momentum bin contents from a Geant4.10.4.p03 distribution minus that of Geant4.10.7.p00

Locations of silently killed muons (when killed) showing a hollow production target shape

8

Data-driven Validations

- Must also compare simulated data against both our own hardware and well-established experimental results
- Internal Validations:
 - Treatment of cosmic ray backgrounds (in commission)
 - Prototype test-beam studies
 - Beam studies in Phase-α

OMET

• Particle hits and tracking in Phase-I detectors

Data-driven Validations

- Must also compare simulated data against both our own hardware and well-established experimental results
- Internal Validations:
 - Treatment of cosmic ray backgrounds (in commission)
 - Prototype test-beam studies
 - Beam studies in Phase-α

OMET

• Particle hits and tracking in Phase-I detectors

External Validations:

- Proton collision data with HARP and NA64/SHINE:
 - http://harp.web.cern.ch/harp/Classified/PUBLICATIONS/Papers/P-Al/p-Al129.pdf
 - <u>http://arxiv.org/pdf/1603.06774.pdf</u>
- Antiproton production studies

Conclusion

- COMET aims to provide a **window into BSM physics**
- Phase-α data in early 2023

Imperial College

London

- Must ensure simulation and analysis software is prepared
- Understanding the finest details of beam and backgrounds
- Important to validate simulations between versions, and against real data when and where available
 - Influence hardware design and understand data
 - Helps ensure robust measurements while increasing sensitivity

Latest design for a dynamic beam collimator, testing varied beam configurations

Extra Slides

Арр

OMET

Backgrounds

Pulsed beam timing, gives muons time to decay and stops flooding of detector by prompt beam

Momentum distribution from Decay in Orbit background (left) and from μ -*e* signal (right)

Radiative Muon Capture + N emission

Type	Background	Events
Physics	Muon DIO	0.1
	Radiative μ capture	0.0019
	Neutron emission after μ capture	< 0.001
	Charged particle emission after μ capture	< 0.001
Prompt	Radiative π decay	0.0028
beam	Neutrons	$\sim 10^{-9}$
	Others	≤ 0.0038
Delayed	Beam electrons	~ 0
beam	μ decay in flight	~ 0
	π decay in flight	~ 0
	Radiative π capture	~ 0
	Anti-proton induced backgrounds	0.0012
Others	Cosmic rays	< 0.1
Total		0.032

BSM *μ-e*

- SM says that leptons (*e*, μ) and their neutrinos (*v*) must conserve flavour
- Some observations cannot be described within the SM framework, such as the observation of 'neutrino flavour oscillations', a lepton flavour violation (LFV)!
- A modified SM with non-zero v mass describes μ-e conversion, but requires a v and W-boson which have wildly different masses, causing a tiny branching ratio of O(10⁻⁵⁴)

$${
m BR}(\mu o e \gamma) =
onumber \ rac{3lpha}{32\pi} \left| \sum_{i=1}^3 U^*_{\mu i} U_{ei} rac{M^2_{v_i}}{M^2_W}
ight| \simeq \mathcal{O}\left(10^{-54}
ight)$$

Imperial College

London

- COMET's main software framework, based on T2K ND280, for simulation, reconstruction, analysis and more.
- Uses Geant4 for Monte-Carlo propagation, and primary choice for target interactions
- Can treat simulated and real data identically
 - Simulations provide normally unobtainable data (true trajectories and parent particles)
 - Work towards creating realistic 'mock' data

Imperial College

London

Checking Simulations

- Large-scale MC production sets, equivalent to 1e9 Protons, using the latest hardware designs, internal software and suitable versions of external software
 - Takes several weeks to run across the UK GridCC Network, to simulate ~1 ms of beam data in the shorter Phase-I
- Must ensure computing resources are put to good use, and that researcher time and decision making in post-simulation is not in vain...
- Can compare smaller datasets between versions to look for any unexpected differences due to small or large-scale changes
- Can also **compare** simulations against **real data**, both internally and externally

e omet

Absolute vs Relative

