

Searching for a muon EDM at the new g-2 experiment at Fermilab

IOP HEPP/APP conference, April 2022

Dominika Vasilkova

Dominika Vasilkova

Dominika Vasilkova Slide 2/12

Muon dipole moments

 Particles in an electromagnetic field interact with it via an intrinsic magnetic dipole moment (MDM) and hypothetically could interact via an electric dipole moment (EDM):

$$H = -\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E} \qquad \qquad \vec{\mu} = g \frac{e}{2m} \vec{S} \qquad \qquad \vec{d} = \eta \frac{Qe}{2mc} \vec{S}$$

- The muon EDM is interesting because:
 - The electron EDM has a limit of $8.7 \times 10^{-29} e \cdot cm$ suggests the muon EDM (via mass scaling) should be < $10^{-27} e \cdot cm$ well below the range of current experiments!
 - **d.E** is CP-odd, so an EDM observation would give a **new source of CP violation** in the lepton sector!
- For the muon, the previous best limit was set by Brookhaven National Laboratory (BNL) as $1.9 \times 10^{-19} e \cdot cm$.

The new g-2 experiment at FNAL

- Polarised muons injected into a storage ring, ring magnet provides a field of 1.45T.
- Magnetic field causes the direction of spin to precess in a plane.
- Positrons from decay preferentially emitted along the spin direction.
- Can then analyse the decay with 24 calorimeters + 2 straw tracker stations.

How do we look for an EDM?

- An EDM tilts the precession plane can detect by looking at the average vertical angle in the trackers.
- Previous tracker result statistically limited, and FNAL is aiming for a 21-fold improvement in stats.
 - Many more tracks FNAL trackers can turn on sooner, are placed in the vacuum closer to the beam.
- FNAL EDM analysis aim is an improvement on the old limit of two orders of magnitude (~ $10^{-21} e \cdot cm$).

BNL (2000 dataset)

Largest hurdles for the tracker analysis

• Radial field:

- Tilts the precession plane, introducing a 'fake EDM' signal.
- Uncertainty on this tilt contributes to EDM uncertainty important to measure well!

Acceptance and dilution:

- Not all positrons emitted along the direction of maximum tilt.
- Not all positrons will reach the trackers and be detected.
- Both effects momentum dependent and quite complex correction estimated from simulation.
- Statistical uncertainty need good quality tracks to reliably extrapolate to the vertex.

Dominika Vasilkova Slide 6/12

Predicted EDM sensitivity

- Generate simulated tracks to make a 'whole experiment' size dataset + analyse.
- Simulate the impact of main sources of uncertainty to find which limits the analysis.
- Found we are limited by the radial field first, followed by the statistical uncertainty, so better measurements of the radial field were needed to achieve best results.
- Target limit of $O(10^{-21} e \cdot cm)$ achievable.

Fitting the average vertical angle

- Mid-momentum cuts to maximise the sensitivity.
- Plot modulo the g-2 period overlays oscillation, and averages out any other oscillations at the wrong frequency (e.g. beam motions).
- Fix phase and frequency.
- Longitudinal magnetic field also tilts the plane, but in phase with g-2 – so fit simultaneously for both an in phase component and an out of phase component:

 $A_{EDM} \sin(\omega_a t + \phi) + A_{Bz} \cos(\omega_a t + \phi) + c$

Dominika Vasilkova Slide 8/12

Keeping the analysis blind

- Important to not bias analysis, work 'blind' similarly to the MDM analyses.
- Hide 'true' oscillation by injecting fake signal of unknown amplitude – sampled from a distribution designed to give amplitude >> BNL limit.
- All analysis done with blinded data, once complete can unblind.
- Tested with MC data.

Status of analyses – Run 1

- Radial field estimated from mean vertical beam position – known to sufficient precision to be stats-limited.
- Blind fits for the EDM amplitude produced simultaneously in mid-range momentum bins.
 - Due to momentum-dependent dilution, this increases sensitivity to EDM
- Dilution factor from decay and tracker acceptance investigated in MC, corrections applied to data.
- Final result expected to be as least as strong as BNL limit.

Dominika Vasilkova Slide 10/12

Status of analyses – Run 2 and 3

- Run 2/3 analysis just started expected to have significant increase in tracks vs Run 1, likely still statistics-limited but systematics become more important.
- Simple mid-momentum fits for EDM amplitude and longitudinal field produced:

Status of analyses – Run 2 and 3

- Radial field estimated for Run 2 and Run 3, with a drifting radial field found in Run 3.
- Very small change, but does move the beam vertically, which leads to a changing tracker acceptance.
 - Needs to be well understood, as leads to drifts in other fit parameters as well as a change in the correction needed.
- Once this is understood, a full momentumbinned analysis can be performed.

A secondary physics goal of FNAL g-2 is to measure the muon EDM, to improve the previous limit set at

- Run 1 and Run2/3 analyses underway, together will improve on the BNL limit.
- Still lots more data to go Run 4 and Run 5.
- Overall, on track to set a world-leading limit on the muon EDM.

BNL.

Dominika Vasilkova Slide 13

HUME

HEFFE

Ш

Backups

EDM searches

- Electron EDM is already constraining BSM physics.
- Muon EDM not quite there yet BNL limit shown on this plot.
- Target FNAL limit is the black dashed line.

Dominika Vasilkova Slide 16/12

The FNAL g-2 beamline

- 8 GeV Protons in FNAL's recycler ring delivered to muon campus in 'bunches'.
- Protons → Target (Ni-Fe alloy) → Pions → Delivery ring → Decay to muons → Storage ring.
- Lithium lens to focus the pions, pulsed magnet to select 3.1 GeV muons.

FNAL g-2 in more detail

- Muon storage ring magnet provides radial restoring force, so need a set of electrostatic quadrupoles (ESQ) to keep beam stored vertically.
- Inflector shields muons from ring field as injected, so that they enter with minimal deflection.
- Kickers used to push beam into optimal orbit.
- Variety of detector systems:
 - Calorimeters to measure energy/momentum
 - Trackers allow beam distribution measurements + EDM vertical angle studies
 - Also have destructive beam measurement tools like fiber harps that are placed in the beamline occasionally.

Dominika Vasilkova Slide 17/12

FNAL g-2 in more detail (cont.)

• Also need to know the magnetic field to high precision for the precession frequency:

$$a_{\mu} = \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2} \frac{\omega_a}{\tilde{\omega}_p}$$

- Trolley contains an array of NMR probes and can travel freely around the ring to map out the field seen by the muons.
- Fixed probes also NMR probes but placed on the ring to monitor the field while muons are in the ring.
- Extra 'plunging' probes for calibration.

Dominika Vasilkova Slide 18/12

The g-2 trackers (more detail)

- Straw trackers with argon-ethane gas.
- Hits in straws are reconstructed into a track, extrapolated backward to decay vertex, forward into calorimeters.

• Multipurpose:

- Monitoring the muon beam profile during runs.
- EDM analysis vertical angle.
- Track and Calorimeter hit matching can compare measurements of momentum/energy.
- Pileup studies easier to see in trackers than the calorimeters.

How we measure the radial field

Exploit the interaction between the vertical beam position, the total radial field, and the electric fields

$$\langle y \rangle \sim \frac{\langle B_r \rangle}{QHV} \rightarrow \frac{\langle B_r^{App} \rangle + \langle B_r^{Bkg} \rangle}{QHV}$$

- $\langle y \rangle$: average vertical cluster position
- $\langle B_r^{App} \rangle$: applied field from surface correction coils
- QHV: electrostatic quadrupole HV
- $\langle B_r^{Bkg} \rangle$: background field (what we measure)

How we measure the radial field, part 2

- Find the point where gradient = 0 (x-intercept).
 - Radial field is then equal in size, opposite in sign.
 - Extrapolate to any data by comparing the mean vertical beam position.

Data from Run 5 scan

EDM analyses – wiggle fits

- We do a similar wiggle fit to the ω_a analysis to get the phase.
- Use the BNL value for ω_a itself as Run 2/3 are not unblinded.

- Shift in A_{EDM} parameter increased by +tive definition of the blinding amplitude.
- Offset slightly increased (MC has a net -tive offset, injected blinding has 0 offset).
- Fit quality unchanged.