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➢ Surveys > 1,000,000 km3  of Antarctic ice

➢ Four flights, two neutrino candidates but consistent with 

background
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➢ Cannot store everything, thus trigger limited

➢ Trigger sensitivity limited by thermal background of antennas

➢ Satellite interference
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Next generation: Payload for Ultrahigh Energy Observations

216 antennas (vs. 48 on ANITA-IV) + Programmable Hardware (RFSoC)

➢ Beamforming trigger combines signals from antennas to lower threshold

➢ Additional benefits

➢ Real time digital filtering of radio interference

➢ Improved pointing resolution

4Detecting ultrahigh energy neutrinos with RFSoCs

ANITA

PUEO

4x more antennas

Programmable 

hardware
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Beamforming – why and how?

Thermal noise 
(uncorrelated 

between antennas)

Signal 
(correlated between 

antennas)

Signal to noise 

ratio

N Antenna Sum

Scales as √N 

Scales as N

Improves by √N 

Geometry requires ‘delay and sum’

➔ Lowers trigger threshold, 

improving detector sensitivity

➔ Multiple beams required for 

different sources locations 
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Beamforming – why and how?

➔ PUEO requires significantly increased computational resources

More antennas

Increased beam power but more, narrower beams needed
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Why digital beamforming with RFSoC…

ANITA analogue trigger

Digitisation combines functionality of many analogue components

RADIO FREQUENCY SYSTEM-ON-CHIP 

▪ High computational power: FPGA with 

4000+ digital signal processing slices

▪ Natively multichannel

▪ High fidelity:12-14 bit

▪ High frequency: 4-6 GHz 

PUEO digital trigger with RFSoC

+ beamforming

✓ Increased computational capacity

✓ Low power

✓ Reconfigure In-flight
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Prototyping for PUEO

216 

antennas

PAYLOAD FOR ULTRAHIGH ENERGY OBSERVATIONS – improving on the ANITA experiments

Prototype goals…

I. Demonstrate on hardware

II. Quantify resources

III. Improve performance

IV. Demonstrate digital filtering

5x lower energy 

threshold vs. ANITA

Greatly increased sensitivity to 

cosmogenic model space!

arXiv 2010.02892
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Programmable logic
▪ Manufacturer tools + hardware description language

Software for on-board CPU
▪ Program clocks + generate simulated signal/noise

Demonstrated beamforming improvement for trigger 

threshold

Cross-Channel alignment achieved

Including across frequencies 

Result: shown hardware capable of beamforming
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II. Resources

Achieved required ~100 beams per RFSoC Bit reduction

Full 12 bits 

Inefficient addition

Reduction to 5 bits 

Carry-Save addition

50-100%

Cannot be implemented
<10%

Resource utilisation* 
100 beams

*8 channels and 8 samples per clock cycle

Limited by either DSP (Digital Signal Processing) blocks 

or CLB (Configurable Logic Blocks)

As % of available resources on Xilinx ZU28DR device

▪ 8 parallel samples means significant resource usage

▪ Resource improvements required from 

▪ Carry-Save: efficient multiple-number addition 

using single block

▪ Bit reduction

▪ Reduce to 5 bits without affecting trigger efficiency

▪ But need to adjust scaling to maintain dynamic range

Result: demonstrated techniques for adequate 

computational resources for beamforming

Clipping reduces 

trigger efficiency
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➢ Do not know sources before flight

➢ Impact also dependent on field of view

Want tuneable filters – can programmable logic help again?
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ANITA-III flight snapshot
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IV. Filtering – examples

“Notch” filters

Utilisation Width to -10dB

10% 230MHz

20% 60MHz

40% 15MHz

DSP utilisation per filter

Result: tuneable digital filter possible but requires 

significant resources and implementation effort

Centre of stopband tuneable with 

simple change to filter coefficients
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Summary

PUEO has potential to discover highest energy 

neutrinos ever measured (by multiple orders of 

magnitude)

5x improvement in sensitivity

➢ Trigger on combined signals from multiple 

antennas

Programmable logic (RFSoCs) are the secret sauce

➢ Massive computational resources 

➢ Low power

➢ Tuneable interference filtering

Flight scheduled for 2024

➢ Expect neutrino detection from several cosmogenic 

models


