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Next generation: Payload for Ultrahigh Energy Observations

216 antennas (vs. 48 on ANITA-IV) + Programmable Hardware (RESoC)

» Beamforming trigger combines signals from antennas to lower threshold
» Additional benefits

> Real time digital filtering of radio interference
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ANITA-11I flight snapshot
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Summary

PUEO has potential to discover highest energy
neutrinos ever measured (by multiple orders of
magnitude)

5x improvement in sensitivity
» Trigger on combined signals from multiple
antennas

Programmable logic (RFSoCs) are the secret sauce
» Massive computational resources

» Low power

» Tuneable interference filtering

Flight scheduled for 2024
» EXxpect neutrino detection from several cosmogenic
models
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