Saturation corrections in the LUX-ZEPLIN experiment

Aiham K. Al Musalhi IOP HEPP & APP Annual Conference 2022

Illustration by Sandbox Studio, Chicago with Ana Kova

Introduction

- $\circ\,$ LZ designed for WIMPs, with nuclear recoil energies of $\mathcal{O}(10)~\text{keV}_{nr}$
- PMTs operated with **dual-gain** output:

	Area gain	Shaping (FWTM)
High gain (HG)	40	60 ns
Low gain (LG)	4	30 ns

 Signals from ~200 keV_{ee} events can exceed 2 V dynamic range of DAQ ⇒ ADC saturation

 Impacts reconstruction and resolution of position and energy, relevant for high-energy searches and backgrounds, when LG can saturate

Proposed method (1)

- Various possible approaches for saturation correction, e.g. functional fits, machine learning
- This approach uses the **nearest non-saturated neighbour** as a template waveform

⇒ assumes neighbouring PMT signals have comparable widths

 PMTs addressed in order of proximity to interaction vertex, starting with the furthest

Proposed method (2)

• For a given saturated signal, the reference must first be **aligned**

Utilise smoothed gradient/height space, with match point at absolute minimum

> ⇒ assumes peaks are approximately Gaussian

Possible complications expected for:
– asymmetric waveform shapes
– double-peaked waveforms

Proposed method (3)

Aligned waveform is **scaled up** such that rises **intersect** at start of **saturated interval**

Original rise and tail are **stitched** at **intersection points** (where possible*)

*otherwise defaults to discontinuous cut-off

 ○ PMT updated with result; may be used for subsequent corrections ⇒ could lead to systematic error

What does this look like for the **entire cluster**?

Validation with LG

 Consider events with saturated HG and non-saturated LG

Use **LG waveform** as proxy for **true shape** to validate method

 Accuracy of method mainly depends on energy (maximum amplitude) and depth (pulse width)

Along with pulse **area**, use peak **height/width ratio** as a metric

Validation with LG

Corrected area is fairly consistent with expectation – ratio at: (1.008 ± 0.005)

Peak height/width behaviour is similar between corrected and non-saturated cases

• Demonstrated a simple method to correct for ADC saturation

• Enhances high energy searches and background characterisation

What's next?

Assess for a **large set** of high-energy events; measure impact on **energy resolution**

Investigate variations in performance with energy, position, etc.

Science and Technology Facilities Council