Se-Rn-dipitous Seque-

rial College

London

SCIENTIA

Radon mobility in the LZ detector

Nicolas Angelides IOP APP - 4th of April 2022

In this talk:

- The LZ experiment
- Significance of radon backgrounds
- First look at radon in LZ
- Decay of ²²²Rn and ²¹⁸Po
- Radon mobility in liquid xenon
- Liquid flow and radon distribution

From collaborators:

Amy C. - The LZ Experiment Albert B. - Photon Detection Aiham AM. - Saturation Corrections Zhaozhen T. - Majornon sensitivity Jordan P. - Stats FlameNEST T. Marley - Migda effect setup Ishan K. - Accidentals with Neural Nets Kelsey C O.-M. - Next gen Jo O. - LZ Poster

Z Currently collecting science data 4850 ft underground

- at the Sanford
- Underground Research Facility

Main LZ detector fully assembled in Rn-reduced surface assembly lab 3

Δ

Time **P**rojection Chamber

.5 m

100x more sensitive than predecessor (LUX 250kg)

ratio of observables for Signal-like (NR) and BG-like (ER) interactions

PMT hit pattern & Δt reconstruct position

Low energy ERs leak into WIMP signal region

~70% of BGs from ²¹⁴Pb β-decay (Radon chain)

arxiv1802.06039

Radon is emanated from detector material and mixes with the liquid xenon

β-decay with naked branch (no accompanying gamma) resulting in low energy recoils

Early science data used in studying radon

chain α -decays

Activity is within expected range

Each radon atom goes through a **sequence** of decays

²¹⁸Po with half-life 3.1m decays in close succession and proximity with parent, both with large signals

²²²Rn-²¹⁸Po decay sequels (pairs) can be formed from LZ data

Selection purity is evaluated through the observed pair separation (²¹⁸Po half-life = **186s**)

لمة Observed: Mobility=0.22(4) cm2/s/kV Charge Frac = 46(3) %

Cou

Literature (EXO-200): Mobility=0.219(4) cm2/s/kV Charge Frac = 50(3) %

13

Ζ

Neutral ²¹⁸Po pairs reveal structure in observed azimuthal fluid flow as well

Azimuthal flow appears to correlate with non-uniformities in ²²²Rn spatial distribution

Current and future experiments may achieve cleaner fiducial volume by manipulating liquid flow

Azimuthal coherence impacts radon distribution 16

Observations appear stable through science run

Flow rate configurations will be explored in the future 17

Summary:

- LZ is currently taking science data
- Radon activity is within expected range
 ²²²Rn-²¹⁸Po decay pairs probe flow
- Fluid flow impacts radon distribution
- Implications for **future detector design**
- Flow modeling can be used to veto radon BGs in LZ

FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA

Science and Technology Facilities Council

ib^S Institute for Basic Science

Sanford Underground Research Facility

Thank

vou

20

Back-up

World leading results expected in 2022 \rightarrow

22

WIMPS

 $\begin{array}{c} \mathsf{CE}\nu\mathsf{NS}\\ \mathsf{0}\nu\boldsymbol{\beta}\boldsymbol{\beta} \end{array}$

Impact of 222Rn specific activity on projected WIMP-nucleon sensitivity

arxiv1802.06039

23

Background Expectation WIMP ROI - 1000d - 5.6t fiducial

WIMP ROI BG dominated by radon progeny

Ζ

25

arxiv1802.06039

arxiv1802.06039

