The LUX-ZEPLIN (LZ) Experiment *Amy Cottle, University of Oxford IOP HEPP 2022*

Introduction to LZ

- LZ is based 4850 ft underground at the Sanford Underground Research Facility (SURF) in Lead, SD
- LZ is a dark matter direct detection experiment
 - Primarily designed for WIMPs, but has considerable sensitivity to other new physics
- Central detector: dual-phase xenon time projection chamber (TPC) with 7 t active xenon
- "Skin" & outer detector (OD) active vetoes
- The detectors have been commissioned and science data-taking is underway

Outer veto detector: Gd-doped liquid scintillator

Liquid xenon TPC

Liquid xenon "Skin" veto detector

TPC Detection Principle

- Interactions in the xenon create
 - Light prompt scintillation S1
 - Charge electrons drifted and extracted into gas -> proportional scintillation - S2
- Excellent 3D position reconstruction (~mm)
 - Z from time difference between S1 and S2
 - XY from S2 hit pattern on top PMT array
- S2:S1 ratio discriminate electronic recoils (ERs) from potential WIMP nuclear recoils (NRs)

Background Mitigation

- Material selection ~2000 assays; radon emanation & neutron activation analysis
- Cleanliness protocols Rn-reduced cleanroom assembly –> limit surface contamination
- Xenon purification charcoal chromatography; online radon reduction & getter usage
- Analysis cuts fiducialisation, single scatter, energy ROI, veto anti-coincidence

WIMP Sensitivity

For full exposure (1000 days * 5.6 t):

Background counts after analysis cuts in the 40 GeV/c² WIMP ROI

Source	ER [cts]	NR [cts]
Total	1131	1.03
+ 99.5% ER discrimination, 50% NR efficiency	5.66	0.52

90% CL minimum: 1.4 x 10⁻⁴⁸ cm² at 40 GeV/c²

<u>PRD 101, 052002 (2020)</u> astropartphys.2020.102480

		_
		_
		_
		_
		_
		_
0		
0		
<u> </u>		
0		
		_
		_
		_
1		
1		
1		1
_		
		_
		_
	-	
		_
		_
	_	_
		_
		_
		-
	-	
	_	
		\sim
		_
	-	
		-
		-

Physics Reach Beyond WIMPs

Solar Axions

Neutrino Magnetic Moment & Effective Millicharge

• Low energy ER – competitive for solar axions; neutrino μ_{ν} , q_{ν} ; axion–like particles + more

• High energy ER – 134 Xe $2\nu\beta\beta$ & $0\nu\beta\beta$, 136 Xe $0\nu\beta\beta$ + exotic decay modes (see Z. Tong's talk) PRD 104, 092009 (2021), PRC 102, 014602 (2020), PRC 104, 065501 (2021)

¹³⁶Xe Neutinoless Double Beta Decay

Construction & Commissioning Timeline

TPC & Skin integration in the Surface Assembly Laboratory (SAL)

OD acrylic tanks underground

Inner cryostat vessel (ICV), housing TPC, underground

2019

Construction & Commissioning Timeline

High voltage installed; ICV sealed & under vacuum

2020

The LZ Experiment, HEPP & APP Conference 2022

OD PMT & Tyvek Installation

Detector Commissioning

Commissioning Activities

- TPC detector levelled & grids biassed in liquid
 - ~190 V/cm drift & ~7.5 kV/cm gas fields established
- Data processing chain exercised with first S1+S2s
- Data acquisition & trigger settings tuned
- PMT operations & characterisation
 - LED measurements for e.g. afterpulsing and single photoelectron (SPE) studies
 - PMTs gain-matched and gain drifts monitored
 - Dark count & DPE analyses (see A. Baker's talk)

Calibrations

- Different deployment systems available
 - Circulation panel for injection into Xe
 - Vertical source tubes between TPC & Skin for commercial rod sources
 - DD neutron generator + TPC conduits (see J. Orpwood's poster)
- Calibrations can be used to inform
 - Energy scale in all three detectors
 - Inter-detector timings
 - NR & ER bands in the TPC

Detector Response Characterisation

The LZ Experiment, HEPP & APP Conference 2022

• Mono-energetic ER peaks can be used to find

- g1, photons detected (phd) per prompt scintillation photon
- g2, phd per ionisation electron

via the relation $E = W\left(\frac{S1_c}{g1} + \frac{S2_c}{g2}\right)$,

where E = energy, W = W - valuec denotes position-corrected signals

• Saturation of higher energy signals problematic (see A. Al Musalhi's talk)

Background Analyses

• Trial fits of background simulations to data attempted, matching mono-energetic peaks • Rn222 & Rn220 chain alpha populations identified & constrained (see N. Angelides' talk) • Investigating non-xenon sources of charge/light e.g. Cherenkov (see I. Khurana's talk)

The LZ Experiment, HEPP & APP Conference 2022

Conclusions

- LZ is a multi-physics experiment, primed for the detection of WIMPs
- The experiment has started taking science data, and extensive analyses are underway
 - Radon in LZ N. Angelides
 - Saturation corrections A. Al Musalhi
 - VUV detection A. Baker
 - Majoron searches Z. Tong
 - Cherenkov backgrounds I. Khurana
 - Multiple scatter studies in DD data J. Orpwood

@lzdarkmatter https://lz.lbl.gov/

Science and Technology **Facilities** Council

Acknowledgements

LZ (LUX-ZEPLIN) Collaboration 34 Institutions: 250 scientists, engineers, and technical staff

