Development of the Pandora LArTPC event reconstruction to optimise the sensitivity to CP violation at DUNE

Isobel Mawby (on behalf of the DUNE collaboration)

IOP HEPP & APP Annual Conference 2022 Rutherford Appleton Laboratory STFC 3-6 April 2022

Contents

- The Deep Underground Neutrino Experiment (DUNE)
- Liquid-Argon Time Projection Chambers (LArTPCs)
- The reconstruction chain of DUNE
- CP violation analysis
 - Nue/numu selection procedure
 - Standard performance
 - Improvements
 - Future Work

- The far detector is planned to consist of four 10kt fiducial mass modules 1.5 km underground and 1300 km downstream of the near detector, two of these will be LArTPCs
- Primarily DUNE aims to:
 - precisely measure the neutrino oscillation parameters including the CP violating phase δ_{CP}

Institute of Physics

- search for beyond the standard model physics
- detect **low energy** neutrinos such as those from supernova bursts

3 06/04/22 Isobel Mawby I Optimising the sensitivity to CP violation at DUNE

LArTPC Operation

JINST (2017) 12:02

- Neutrinos enter the far detector and interact with the **argon nuclei**
- Outgoing **charged** particles **ionise** the liquid argon as they traverse the detector
- An applied **electric field** drifts the ionisation electrons to a series of **wire planes** where they are detected

LArTPC Images

JINST (2020) 15:12

- LArTPC detectors are **fully active and fine grain**, offering **superb** spatial and calorimetric resolution
- The aim is to **identify and characterise** the visible particles in these images allowing us to perform our analyses and obtain physics results!
- To exploit such a detailed input we need a **sophisticated event reconstruction chain**

A Very Brief Reconstruction Chain Overview

- Pandora employs a **multi-algorithm approach** to pattern recognition
 - A library of traditional algorithms are applied alongside an ever growing number of machine learning approaches to gradually build, from the input hits, the particle hierarchies
 - Each particle is identified as track or showerlike
 - Any necessary **high-level reconstruction** is now performed on the output of Pandora:
 - **Tracks** and **showers** are fully characterised in terms of their vertex, direction, de/dx etc
 - The energy is estimated
 - Anything else needed in the analysis...

Analysis: CP Violation

- In neutrino oscillations CP violation is characterised by the **CP violating phase** δ_{CP} where CP is
 - **conserved** if $\delta_{CP} = 0, \pi$
 - **violated** if $\delta_{CP} \neq 0, \pi$
 - maximally violated if $\delta_{CP} = \pm \frac{\pi}{2}$

- DUNE's sensitivity to CP violation is obtained by **simultaneously fitting** the expected $v_e, v_\mu, \bar{v}_e, \bar{v}_\mu$ energy spectra for all δ_{CP} values to the **CP conserving hypothesis**
- As we move towards the maximally violating phase, the fit to the CP conserving hypothesis becomes worse and our sensitivity grows

Analysis: v_e/v_μ selection*

* Credit to **Dom Brailsford** for initial development and continued support

 Events are selected as a result of the determined identity of the candidate leading leptons in the event (should they exist)

Initial Performance

	Nue	Nue	Nue BG	Numu	Numu	Numu BG
	Efficiency	Purity	Rejection	Efficiency	Purity	Rejection
Pandora	60.0%	67.1%	98.6%	88.3%	87.2%	94.4%

- The numu selection is very good, but the nue selection dominates the sensitivity and must be improved
- The Pandora multi-algorithm approach allows hypothesised improvements to be investigated in an iterative manner allowing a specific problem to be identified

i.e. would a more **accurate neutrino vertex** placement result in a better sensitivity? If so, in what events? for which topologies? etc...

Pandora CP Violation Sensitivity (no stats/systematics)

Leading Reconstruction Failure

- We know that the nue selection dominates the sensitivity, we know that our nue selection relies on our electron-like BDT being accurate, and we know that the main inaccuracy is the BDT confusing electron with photons
- The initial de/dx of the shower and the nu-shower start displacement is used to aid electron/photon separation – maybe this is where our improvements can be found...

Institute of Physics

Leading Reconstruction Failure

- Let's hypothesise that to improve the sensitivity, we need to
 - Make sure that electrons that should have made their way back to the neutrino vertex do
 - Make sure that photons that should not have made their way back to the neutrino vertex do not

Institute of Physics

11 06/04/22 obel Mawby I Optimising the sensitivity to CP violation at DUNE

Creating an Algorithm

- The Pandora multi-algorithm approach allows us to create a **specifically designed algorithm** to fix this reconstruction failure and achieve large sensitivity gains
- In this algorithm we
 - Find the connection pathways that the electron (photon) should have (has) followed to get back to the neutrino vertex

drift coordinate

- **Decide** whether the connection should be there or not (at the moment a cheated decision but will be replaced by a BDT in future)
- Add in the connection pathway, or remove

Hybrid Algorithm Performance

 The algorithm still relies on cheating the connection pathway decision and the neutrino vertex placement, so let's call this a 'hybrid' configuration

Summary

- A Pandora analysis of DUNE's sensitivity to CP violation has been illustrated
- The leading limiting reconstruction failure with respect to CP violation is the reconstruction of the initial region of showers
- This has motivated the development of a hybrid electron extension tool and hybrid photon truncation tool for which performance is looking very good!
- Work is now focused on replacing the connection pathway assessment with a real reconstruction decision by the development of a BDT

