

Improving the NOvA 3-Flavour Neutrino Oscillation Analysis Selection

Veera Mikola

Veera.Mikola.19@ucl.ac.uk

IoP Joint APP and HEPP Annual Conference 6th of April 2022

NOvA

- Long-baseline neutrino experiment studying neutrino oscillations
- Two functionally identical, finely granulated tracking calorimeter detectors 810km apart
 - Neutrinos from the NuMI beam
 - Underground near detector 300 tons
 - Surface far detector 14 ktons
- The detectors are placed 14.6 mrad off the ٠ beam axis to obtain a narrow energy peak near where the oscillations are maximal ($\sim 2 \ GeV$)
- 4 neutrino oscillation channels
 - $\boldsymbol{v}_{\boldsymbol{\mu}}$ disappearance $(\boldsymbol{v}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{v}_{\boldsymbol{\mu}})$
 - $\boldsymbol{v_e}$ appearance $(v_{\mu} \rightarrow v_e)$
 - **Respective anti-neutrino channels**

Physics Goals of NOvA

- Measure the neutrino oscillation parameters Δm^2_{32} and $sin^2\theta_{23}$
- Set limits to mass hierarchy, $heta_{23}$ octant and δ_{CP}

2-flavour approximation: (L = 810 km) $P(v_{\mu} \rightarrow v_{\mu}) = 1 - sin^{2}(2\theta_{23})sin^{2}(\frac{1.27\Delta m_{32}^{2}L}{E})$

normal hierarchy (NH)

inverted hierarchy (IH) Δm_{sol}^2 ν_2 Δm_{sol}^2 ν_1 Δm_{atm}^2

 ν_3

Event selection study

- NOvA is still taking data, but there are other ways to improve the future results:
 - improve uncertainty and systematics
 - better event selection and energy estimation
- NOvA signal is the observed charged current (CC) v_{μ} neutrino interactions and background is all other neutrino interactions (NC, v_e and v_{τ})
- Current NOvA 3 flavour analysis does not select all v_{μ} CC events
 - Recover these events back to the analysis with a cut based on neural network training
 - Potentially improve the sensitivity

 Example Event from NOvA in two orthogonal views

 v_e CC Event

NC Event

Current NOvA Selection

First basic cuts: energy > 0, sufficient number of hits, track angle (no vertical tracks)

Containment: neutrino energy deposited within the detector

Cosmic Rejection BDT (boosted decision tree): reject cosmic ray events

PID: particle identification using deep learning CNN (convolutional neural network)

Current NOvA selection

- Data: NOvA simulation
- Far detector
- Scaled to be what is seen in the detector

Events cut from 2020 analysis

- Pre-selection minus post-selection: events that are currently not selected
- Either failed the cosmic rejection or the particle identification cut

Training the Network

- Two TensorFlow neural networks:
 - signal (v_{μ} CC) and background (everything else)
 - signal (v_{μ} CC) and two background categories (NC and v_{e})
- 14 variables, different information on event energies, momentum, track information etc.

1st model with two categories: v_{μ} CC signal, background (everything else)

2nd model with three categories: v_{μ} CC signal, NC and v_{e}

Conclusions & Future Work:

- Potentially could recover 40% of these events based on the network
 - Equivalent to 5% increase in the number of events
- If 100% of excluded events are recovered the increase in effective POT is 14%
 - In reality the improvement will be less
- There are some questions on the quality of the events since they failed to cut
- Training has room for improvement check variable correlations and susceptibility to systematics

Thank you!

Questions?

Backup

Events cut from 2020 analysis

NumuCC signal by component

Network details:

• Variables trained

Slice:

kNHit (Number of hits) kCalE (Calorimetric Energy) kEPerhit (calE per hit) kHADEperhit

Cosmis Rejection:

Cos Angle of Best Kalman Track (kAngleKal)

<u>CVN:</u> ProngIndex_muonlike (kCVNMuonIdx)

Track variables:

kRecoThetaMu

kNumuMuonPtP (Reconstructed muon Pt/P) kNumuMuonPt (Reconstructed muon transverse momentum Pt) kTrkLenght (Track Length)

Energy/Event:

kHadE (Hadronic energy)

kRecoW (Reconstructed invariant mass) kHadEFrac (Hadronic energy fraction) kCCE (Reconstructed neutrino energy) kRecoEPerHit (NueE per hit)

