

Status of Triple Differential $\bar{\nu}_{\mu}$ CC Inclusive Cross-section Measurement in the NOvA Near Detector

Prabhjot Singh, on behalf of the NOvA Collaboration

IoP 2022 - Joint APP/HEPP Conference 6 April 2022

• NOvA is a long-baseline two-detector neutrino oscillation experiment

- NOvA is a long-baseline two-detector neutrino oscillation experiment
- Both detectors filled with liquid scintillator and composed of 77% CH₂, 16% chlorine, 6% TiO₂ by mass

- NOvA is a long-baseline two-detector neutrino oscillation experiment
- Both detectors filled with liquid scintillator and composed of 77% CH₂, 16% chlorine, 6% TiO₂ by mass

Prabhjot Singh

- Neutrino beam peaks at 2GeV
- High neutrino flux at the near detector is used for neutrino cross-section measurements

Prabhjot Singh

Prabhjot Singh

$\bar{\nu}_{\mu}$ CC Inclusive Cross Section

- Signal: $\bar{\nu}_{\mu} + A \rightarrow \mu^{+} + X$
- We expect more than 1 million signal events giving us a good handle on statistics

$\bar{\nu}_{\mu}$ CC Inclusive Cross Section

- Signal: $\bar{\nu}_{\mu} + A \rightarrow \mu^{+} + X$
- We expect more than 1 million signal events giving us a good handle on statistics
- The deliverables are triple differential cross sections in anti-muon kinematics $(T_{\mu}, \cos \theta_{\mu}),$ and Eavail
- E_{avail} is a measure of the hadronic energy deposited in the detector

Prabhjot Singh

 $\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}dT_{\mu}dE_{Avail}}\right)_{i} = \frac{\sum_{j}U_{ij}(N^{sel}(\cos\theta_{\mu},T_{\mu},E_{Avail})_{j}P(\cos\theta_{\mu},T_{\mu},E_{Avail})_{j})}{\epsilon(\cos\theta_{\mu},T_{\mu},E_{Avail})_{i}(\Delta\cos\theta_{\mu})_{i}(\Delta T_{\mu})_{i}(\Delta E_{Avail})_{i}N_{target}\phi}$

- For differential cross section measurements, we need
 - To select candidate signal events

- For differential cross section measurements, we need
 - To select candidate signal events, sample purity lacksquare

- For differential cross section measurements, we need
 - To select candidate signal events, sample purity ullet
 - The unfolding matrix (reco to true migration)

$= \frac{\sum_{j} U_{ij} (N^{\text{sel}}(\cos \theta_{\mu}, T_{\mu}, E_{Avail})_{j} P(\cos \theta_{\mu}, T_{\mu}, E_{Avail})_{j})}{\epsilon(\cos \theta_{\mu}, T_{\mu}, E_{Avail})_{i} (\Delta \cos \theta_{\mu})_{i} (\Delta T_{\mu})_{i} (\Delta E_{Avail})_{i} N_{\text{target}} \phi}$

- For differential cross section measurements, we need
 - To select candidate signal events, sample purity \bullet
 - The unfolding matrix (reco to true migration)
 - Selection efficiencies

$\sum_{j} U_{ij} (N^{sel}(\cos \theta_{\mu}, T_{\mu}, E_{Avail})_{j} P(\cos \theta_{\mu}, T_{\mu}, E_{Avail})_{j})$ $\epsilon(\cos \theta_{\mu}, T_{\mu}, E_{Avail})_{i} (\Delta \cos \theta_{\mu})_{i} (\Delta T_{\mu})_{i} (\Delta E_{Avail})_{i} N_{target} \phi$

- For differential cross section measurements, we need
 - To select candidate signal events, sample purity
 - The unfolding matrix (reco to true migration)
 - Selection efficiencies
 - Integrated beam flux, and number of target nucleons \bullet

Prabhjot Singh

$$\frac{I(\cos\theta_{\mu}, T_{\mu}, E_{Avail})_{j}}{E_{Avail}} \frac{P(\cos\theta_{\mu}, T_{\mu}, E_{Avail})_{j}}{(\Delta\cos\theta_{\mu})_{i}(\Delta T_{\mu})_{i}(\Delta E_{Avail})_{i}N_{target}\phi}$$

- For differential cross section measurements, we need
 - To select candidate signal events, sample purity
 - The unfolding matrix (reco to true migration)
 - Selection efficiencies
 - Integrated beam flux, and number of target nucleons \bullet

Prabhjot Singh

• Normalization by bin widths

$$\frac{I(\cos\theta_{\mu}, T_{\mu}, E_{Avail})_{j}}{E_{Avail}} \frac{P(\cos\theta_{\mu}, T_{\mu}, E_{Avail})_{j}}{(\Delta\cos\theta_{\mu})_{i}(\Delta T_{\mu})_{i}(\Delta E_{Avail})_{i}N_{target}}\phi$$

Hits associated in time and space are used to reconstruct tracks and showers

Prabhjot Singh

- Hits associated in time and space are used to reconstruct tracks and showers
- Interaction vertex of events should be in the fiducial volume

Prabhjot Singh

- Hits associated in time and space are used to reconstruct tracks and showers
- Interaction vertex of events should be in the fiducial volume
- Fully contained tracks and showers are selected for the analysis

Prabhjot Singh

candidate muons

Prabhjot Singh

Plots by Connor Johnson

Boosted decision tree with muon dE/dx and scattering input variables is used to select

- candidate muons
- BDT provides excellent separation of signal from backgrounds

Prabhjot Singh

Analysis Bins

Prabhjot Singh

NOvA Simulation

- 84% of signal events are in
- We select bins with at least 200 signal events, giving at most 7% statistical uncertainty

QE Interactions

Prabhjot Singh

NOvA Simulation

• QE interaction mostly live in $low E_{avail}$ (<100 MeV) regions

MEC Interactions

Prabhjot Singh

NOvA Simulation

MEC interaction live in low $E_{avail} < 300 \text{ MeV regions}$

RES Interactions

Prabhjot Singh

NOvA Simulation

• **RES** interactions start to dominate from $E_{avail} > 300$

DIS Interactions

Prabhjot Singh

NOvA Simulation

DIS dominates the high energy

Purity

• Purity is also calculated in 3D bins of T_{μ} , $\cos \theta_{\mu}$, and Eavail

Purity 0 0

- 90.6% pure sample
- Purity reduces with Eavail since at higher Eavail NC backgrounds rise

Prabhjot Singh

NOvA Simulation

Efficiency

- 32.8% efficiency
- Efficiency reduces with T_{μ} due to longitudinal containment
- Efficiency reduces with θ_{μ} due to transverse containment

Prabhjot Singh

Efficiency

NOvA Simulation

Conclusions

- proton on target exposure collected by the NOvA experiment
- hadron energies
- First-ever triple differential measurement of $\bar{\nu}_{\mu}$ CC inclusive cross section
- analysis
- Stay tuned for more updates on this analysis in future

• Work is in progress to measure triple differential $\bar{\nu}_{\mu}$ CC inclusive cross section using 12e20

• Our plan is to measure the cross section in 3D bins of muon kinematics and final state

• Currently working to implement systematic uncertainties. We expect flux and calibration to be one of the biggest systematics of the order of 10% based on our neutrino cross section

IoP Conference 3-6 April 2022 Prabhjot Singh

Backup

IoP Conference 3-6 April 2022

11

Why Neutrino-Nucleus Interactions

Neutrino cross-sections are one of the important systematic uncertainties for neutrino experiments

NOvA: *Phys.Rev.D* 98 (2018) 032012

Source of uncertainty	ν_e signal	Total bea
	(%)	background
Cross sections and FSI	7.7	8.6
Normalization	3.5	3.4
Calibration	3.2	4.3
Detector response	0.67	2.8
Neutrino flux	0.63	0.43
ν_e extrapolation	0.36	1.2
Total systematic uncertainty	9.2	11
Statistical uncertainty	15	22
Total uncertainty	18	25

Units

Arbitrary

Prabhjot Singh

- NOvA is a long-baseline twodetector neutrino oscillation experiment
- To precisely measure neutrino oscillation parameters, neutrino cross sections and other exotic neutrino searches
- Detectors are 14.6 mrad off-axis resulting in neutrino spectrum peaking around 2 GeV
- High neutrino flux at the ND is used for neutrino cross section measurements

Detectors

- Liquid scintillator filled PVC near and far detectors
- 77% CH₂, 16% chlorine, 6% TiO₂ by mass
- Both detectors are functionally identical which helps in reducing systematic uncertainties
- 3D reconstruction of tracks using orthogonal planes
- Scintillation light is captured by WLS fibers and sent to APD for readouts

Prabhjot Singh

Prabhjot Singh

$\bar{\nu}_{\mu}$ CC Inclusive Cross Section

- NOvA plans to measure $\bar{\nu}_{\mu}$ *CC* inclusive cross section using 12e20 proton on target (POT) exposure
- The process is $\bar{\nu}_{\mu} + N \rightarrow \mu^{+} + X$, N is the target nucleus and X represents all other final state particles
- The deliverables are triple differential cross-section in
 - T_{μ} (GeV): kinetic energy of outgoing anti-muon
 - $\cos \theta_{\mu}$: scattering angle of the outgoing anti-muon with respect to beam
 - Eavail (GeV): energy of all observable final-state hadrons
- This reduces the model dependence of the analysis

Prabhjot Singh

- For differential cross section measurements, we need
 - To select candidate signal events
 - The unfolding matrix (reco to true migration), purity, and efficiency
 - Integrated beam flux, and number of target nucleons

Prabhjot Singh

Triple differential Cross-sections

- We plan to measure cross section in 518 3D bins of T_{μ} , $\cos \theta_{\mu}$ and E_{avail} analysis variables
- Corrections from unfolding, purity, and efficiency are applied to the selected candidate signal events
- Splitting cross sections into bins of E_{avail} gives us better handling to understand cross sections of different interaction modes

Prabhjot Singh

