The ve/vµ Ratio in the NuMI Beam

Alex Moor, on behalf on the MicroBooNE Collaboration 6/4/22 UNIVER

Part of the Short Baseline Neutrino Program

https://microboone.fnal.gov/detector/

Liquid Argon Time Projection Chamber

Part of the Short Baseline Neutrino Program

On the BNB with Off-Axis NuMI Componant

https://microboone.fnal.gov/detector/

Liquid Argon Time Projection Chamber

Part of the Short Baseline Neutrino Program

https://microboone.fnal.gov/detector/

Liquid Argon Time Projection Chamber

Part of the Short Baseline Neutrino Program

https://microboone.fnal.gov/detector/

Liquid Argon Time Projection Chamber

Part of the Short Baseline Neutrino Program

https://microboone.fnal.gov/detector/

Liquid Argon Time Projection Chamber

Motivation

- The differences between ve and vµ cross sections on argon are key in neutrino oscillation analyses
- The ratio of these is poorly known experimentally, especially in the low energy region
- A combination of MicroBooNE's strong ability for low energy work and the relatively high ve content of the NuMI flux makes this a good place to study such a ratio

Foundations of this Study

- First goal is to examine the ve/vµ ratio in bins of energy, with potential to characterise the ratios of other kinematic variables
- An exclusive and equivalent selection for ves and vµs will be defined and examined
- Considering each energy bin, examine the bin efficiency and background, then use an unsmearing matrix to move from reco to true space
- This ratio can then be used to constrain the corresponding ratio in the BNB

8

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the **efficiencies** in each bin
- U are the unsmearing matricies
- N is the number of data events selected
- B is the **background** selected

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the **efficiencies** in each bin
- U are the unsmearing matricies
- N is the number of data events selected
- B is the **background** selected

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the **efficiencies** in each bin
- U are the unmearing matricies
- N is the number of data events selected
- B is the **background** selected

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the efficiencies in each bin
- U are the unsmearing matricies
- N is the number of data events selected
- B is the **background** selected

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the efficiencies in each bin
- U are the unsmearing matricies
- N is the number of data events selected
- B is the **background** selected

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the efficiencies in each bin
- U are the unsmearing matricies
- N is the number of data events selected
- B is the **background** selected

$$R_{\frac{\nu_e}{\nu_{\mu}}}^{j} = \frac{\epsilon_{\mu}^{j} U_{\nu_e}^{ij} \left(N_{\nu_{ei}}^{SelData} - B_{\nu_{ei}}^{SelMC} \right)}{\epsilon_e^{j} U_{\nu_{\mu}}^{ij} \left(N_{\nu_{\mu i}}^{SelData} - B_{\nu_{\mu i}}^{SelMC} \right)}$$

- j represents the true bins; i the reconstructed bins
- E are the efficiencies in each bin
- U are the unsmearing matricies
- N is the number of data events selected
- B is the **background** selected

vµ: Selection Plan

As a first pass of the analysis, we use a very simple $\nu\mu$ exclusive selection.

We require that:

--> a pandora neutrino slice is present

--> the event produces **enough light in the detector** to be consistent with a neutrino

--> the reconstructed neutrino vertex is **within the fiducial volume**

- --> at least one muon is present
- --> at least one proton is present

Data Validation at Early Selection Stage

- Consider the position of the reconstructed neutrino vertex
- Add cut to take off parts that are not wanted

vµ: Bin Efficiencies

Reconstructed v Energy

This is after the five selection steps given on slide 16

We now have everything we need for the ratio from vµ!

Why an exclusive selection?

PRE PROTON SELECTION

POST PROTON SELECTION 20

ve: BDT Cuts

BDT and cuts from Katrina Miller, U. Of Chicago

21

1.0

ve: Bin Efficiencies

Reconstructed v Energy

NuMI Run 1, Neutrino Mode, ve - Reconstructed Energies MicroBooNE In Progress 2e+20 POT v. Other: 4.0 v NC: 0.5 40 Cosmic: 0.5 ν_e CC0πNp: 3.7 Out fid vol: 0.6 N. Entries / 0.5 GeV 0 00 00 00 νe CC0πNp: 57.0 ν., CC π⁰: 0.9 / / EXT: 0.6 Vu CC: 1.9 NuMI: 61 ν NC π⁰ · 21 0 2.0 NuMI / (MC+EXT) 1.5 1.0 0.5 0.0 0 2 3 Reconstructed Energy [GeV]

So we now have everything we need from the ve selection!

ve/vµ Comparison

Unsmearing Matricies

These allow us to move from reco to truth space

ve

25

Resulting Ratio

- Ratio when all the ve/vµ bin rations are plotted in bins of true energy
- Overlaps from each selection have been considered – it is 0 or negligible in all cases
- **Uncertainties** currently being considered

Conclusions

- Both a ve and a vµ selection have been defined
- Unsmearing matricies and selection efficiences were used to move the selection from reco to truth space and form the ve/vµ ratio
- Uncertainties on the ve/vµ ratio are being considered
- This ratio will then be used to constrain the corresponding ratio in the BNB

