Recent Progress in Radio Searches for Axion DM

IoP Conference Oxford 5 Apr 2022

Jamie McDonald

CP3 Université Catholique de Louvain & IPPP, Durham

Based on Phys.Rev.D 102 (2020) 2, 023504 and JHEP 09 (2021) 105 and Phys.Rev.D 105 (2022) 2, L021305

Collaborators: R. A. Battye, S. Srinivasan, F. Pace and B. Stappers, P. Weltevrede, M. Keith (U. Manchester) B.

Garbrecht, (TU Munich), J. Darling (Colorado), S. Witte (GRAPPA)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Axions

Generic class of particle: light (psuedo) scalar: a

$$\mathcal{L}_{a}=rac{1}{2}\partial_{\mu} extbf{a}\partial^{\mu} extbf{a}+V(extbf{a})$$

Can couple to photons:

$$\mathcal{L}_{SM} = \frac{g_{a\gamma\gamma}}{2} a \underbrace{F_{\mu\nu}\tilde{F}^{\mu\nu}}_{\text{electromagnetism}}$$

Main motivations:

- Occurs in many extensions of the SM (e.g. "string axiverse")
- Strong CP Problem Peccei, Quinn (1977)

$$\mathcal{L}_{ heta} = rac{ heta_{QCD}}{32\pi} {
m Tr} {m G}_{\mu
u} ilde{m G}^{\mu
u} \qquad heta \lesssim 10^{-10}$$

DM Candidate

Resonant Axion DM Conversion Around Neutron Stars

$$P_{\mathrm{a}
ightarrow\gamma}\simrac{g_{a\gamma\gamma}^{2}B^{2}}{rac{d}{dz}(\omega_{\mathrm{p}}(x_{\mathrm{res}}))}$$

Goldreich-Julien (1960s) of plasma around NSs

$$n_{
m GJ}(\mathbf{r}) = rac{2\,\mathbf{\Omega}\cdot\mathbf{B}}{e}rac{1}{1-\Omega^2\,r^2\,\sin^2 heta}\,,\qquad\qquad\omega_{
m p} = \sqrt{rac{4\pi\,lpha_{
m EM}\,|n_{
m GJ}|}{m_{
m e}}},$$

A. Hook, Y. Kahn B. Safdi, Z. Sun Phys. Rev. Lett. 121 (2018) 24, 241102

- F. P. Huang, K. Kadota, T. Sekiguchi, H. Tashiro Phys.Rev.D 97 (2018) 12, 123001
- M.S. Pshirkov, S.B. Popov J. Exp. Theor. Phys. 108 (2009) 384-388 (Original Proposall)

Observations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theory: Signal Modelling

- M. Leroy, M. Chianese, T. Edwards, C. Weniger Phys. Rev. D 101, 123003 (2020)
- S. Witte, D. Noordhuis, T. Edwards, and C. Weniger Phys. Rev. D 104, 103030 (2022)
- R. Battye, B. Garbrecht, J. I. McDonald, S. Srinivasan JHEP 09 (2021) 105

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Much progress made in plasma ray tracing

image courtesy S. Witte

(Battye, Garbrecht, JIM, Srinivasan (2021))

Dark matter radio emission from the star strongly refracted!

(日) (四) (日) (日) (日)

Time dependence of signal can now be characterised

Pulse Profiles

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Line Shape Can Now be Characterised

Plasma Broadening - time-dependent effects

$$\delta\omega \simeq rac{1}{2\omega}\int dt' \partial_t \omega_{
m p}^2(t',{f x}(t'))$$

き▶ ▲ 差 ▶ 差 の � (♡

Line Shape Can Now be Characterised

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theory + Observation

Ray-Tracing applied to galactic centre magnetar PSR J1745-2900

Battye, Darling, McDonald, Srinivasan (2021) Phys.Rev.D 105 (2022) 2, L021305

イロト 不得 トイヨト イヨト

э

main uncertainties:

- DM density near galactic centre
- possibly magnetosphere structure?
- observing angle of neutron star

Challenges and Opportunities

- ► NSs offer the possibility to probe wide ranges of masses $10^{-7}\mu \text{eV} \leq m_a \leq 10^{-4}\mu \text{eV}$ complementary to experiments.
- Sensitivity of g_{aγγ} constraints to magnetosphere structure ?
 Vital question, but not yet studied
- More radio data always good (either archival or new)
- Accurate measurement of DM density near NSs of interest.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thanks for listening!

(ロ)、(型)、(E)、(E)、 E) の(()