# Neutral current $\pi^0$ events in Super Kamiokande

#### Dan Martin

#### d.martin19@imperial.ac.uk

#### IOP HEPP and APP Annual Conference 2022

#### 4th April 2022

- T2K and Super-Kamiokande experiments
- Neutral Current  $\pi^0$  events
- $NC\pi^0$  Sample selection
- Further development

# T2K and Super-Kamiokande



- Neutrino flavours oscillate due to the mixing of mass and flavour eigenstates
- T2K searches for  $u_{\mu} \rightarrow \nu_{e}$  oscillations
- 2.5deg off axis angle maximises  $\nu_e$  oscillation
- Neutrino oscillation parameters are measured from the flux detected



- The T2K experiment in Japan has a baseline of 295 km
- T2K measures muon neutrino disappearance and electron neutrino appearance using a  $\nu_{\mu}$  beam
- The T2K beam is characterised close to the source (near detector) and far away (far detector)
- The far detector, Super-K is a 22.5 kton ultra-pure water Cherenkov detector

# T2K and Super-Kamiokande



- Super-K measures the oscillated flux as neutrinos interact in the detector
- Charged particles from neutrino interactions emit a cone of Cherenkov radiation which is projected onto the detector wall in the shape of a fuzzy electron like (left) or clean muon-like (right) ring

# Purpose of NC $\pi^0$ sample



- Neutral current interactions are flavour blind so oscillation of flux at Super-K does not affect interactions
- The sample helps constrain interaction models as the error on oscillation models is not required
- There is a lower threshold for detection of  $\pi^0$  decays at Super-K than the near detector, allowing to check ND280 measurements.

# Purpose of NC $\pi^0$ sample



- The sample has high purity using both rings and a well known reconstructed  $\pi^0 {\rm mass},\,135~{\rm MeV}$
- NC $\pi^0$  events are an irreducible background in  $\nu_e$  oscillation samples.

# $NC\pi^0$ Events at Super-K



• A  $\pi^0$  decays dominantly into two photons, each producing e-like rings

• Neutral current events producing a  $\pi^0$  in Super-K can produce a detector response similar to electron like events

# Selection for $\pi^0$ events



- Data quality cuts:
  - Outer Detector hits < 16
  - Visible energy in inner detector > 100 MeV
  - Vertex distance from ID wall > 80cm
  - Vertex distance from wall in direction of travel > 170cm
- Event topology cuts:
  - No decay electrons
  - 2 reconstructed rings
  - Both rings have electron-like PID
  - Event identified as a π<sup>0</sup>by PID variables when reconstructed

9/12

# Final Sample



- Reconstructed π<sup>0</sup>mass for FHC (RHC and other plots in backups)
- 1114 events in FHC and 37 in RHC
- Sample purity: 75% in FHC, 74% RHC
- Sample Efficiency: 39% in FHC and RHC

#### Further developments



- Current work is to calculate systematic errors on sample
- The cuts need to be tuned to better select NCπ<sup>0</sup> events
- This sample will eventually be included in an oscillation analysis

- An NC $\pi^0$ sample of Super-K events is useful for constraining interaction models
- Better understanding of NC $\pi^0$  events could help cover discrepancies seen in oscillation samples
- An initial sample has been made with systematics based on the 1 ring e-like sample already in place
- Further work will refine the selection with tuned cuts and electron-like PID on both rings

#### Backups



More detailed layout of T2K beam

# Systematic Errors



epi0 cut difference from nominal fho

- Systematic errors encompass the difference in reconstruction of Super-K data and MC generated data
- Mismodelling of events is parametised using a bias and smear value
- The cut variables used need to be incorporated into the MCMC chains to shift and smear their values to get an accurate systematic error
- The chains used so far do not include multi ring  ${\rm e}/\mu$  PID variables so the cuts are not included



• FHC (left) and RHC (right) Outer detector hits



• FHC (left) and RHC (right) Visible energy



• FHC (left) and RHC (right) ToWall



• FHC (left) and RHC (right) DWall



• FHC (left) and RHC (right) Decay electrons



• FHC (left) and RHC (right) Number of rings



- FHC (left) and RHC (right) 1st ring PID
- 1 = Electron, 2 = Muon, 3 = Pion



• FHC signal (left) and background (right) electron/ $\pi^0$ PID cut

• 1 = Electron, 2 = Muon, 3 = Pion



• RHC signal (left) and background (right) electron/ $\pi^0$ PID cut



• Reconstructed  $\pi^0$  mass after all selections