

Reconstruction performance and characterisation of electromagnetic showers in the SBND detector.

Ala Zglam The University of Sheffield

IOP 2022 03-06/April/2022

Short-Baseline Near Detector (SBND)

Introduction

- **Short-Baseline Neutrino Program:**
 - Short-Baseline Near Detector (SBND).
 - MicroBooNE.
 - Short-Baseline far detector (ICARUS). (Imaging Cosmic And Rare Underground Signals)
- > The SBN program detectors are based on Liquid Argon Time Projection Chambers (LArTPCs) technology.
- SBN aims to search the oscillations between neutrinos at a short distance.
- A world-leading measurements of neutrino interactions.

- Short-Baseline Near Detector (SBND):
 - located 110 m from the Booster Neutrino Beam (BNB).
 - Closest of the three to the BNB neutrino source.
 - An active mass of 112 tons.
 - Critical role for sterile neutrino search.
 - Outstanding cross-section measurements.
 - BSM physics programmes.
 - Will start collecting data in mid 2023.

Short-Baseline Neutrino Program at Fermilab

Ala Zglam

Shower Reconstruction

Short-Baseline Near Detector (SBND)

SBND Detector

\geqslant **SBND Detector:**

- SBND Detector base on LArTPC with active mass of 112 tons.
- Photon Detection System (PDS); 24 detectors distributed on two sides.
- An external system for Cosmic Ray Tagging (CRT). ٠

SBND LArTPC design and operation principles:

- Two TPCs separated by a centre cathode plane.
- Two Anode Plane Assemblies (APAs) for each TPC.
- Each APA contains three wire planes.
- Tow induction planes (U and V) at \pm 60° to the vertical(Y). •
- A field strengths of 500V/cm applied uniformly between • APAs and CPA.
- Ionisation electrons will be drifted to the planes.
- Photons released will be detected by PDS.

Ala Zglam

Shower Reconstruction

0A

Electron-Neutrino samples (Nu-e)

> True Particles energy with electron shower characterisation for Nu-e samples.

Electron-Neutrino samples (Nu-e)

> True Particles energy with tracks characterisation in Nu-e samples.

> True Particles energy with photon shower characterisation from CC π° events.

Muon-neutrino samples (CC π^{o})

> True Particles energy with tracks characterisation from CC π^{o} events.

Ala Zglam

Shower Reconstruction

Comparison between tuned reconstructed electron showers

Comparison between tuned reconstructed photon showers

Conclusion

> Conclusion:

- The SBN programme can perform a world-leading search for short distance oscillations between neutrinos.
- The SBND experiment will be online soon, and studying the large data sample of neutrino-argon interactions in the GeV energy range is significant for future LArTPCs neutrino experiments such as DUNE.
- There is still work to be done to improve the classification of low energy showers as tracks and classify some of the high energy tracks as showers.
- Tunning the initial track of the shower reconstruction tools improve the reconstruction of dE/dx by about 3%.
- Changing how we choose the best plane of the shower leads to improving the reconstruction of dE/dx by up to 5%.
- There is some work to be done to improve the reconstruction of dE/dx of showers to get a good separation between electron and photon showers.

Reconstruction performance and characterisation of electromagnetic showers in the SBND detector.

Backup Slides

BACKUP SLIDES

Backup Slides

Entries vs. The start position difference for photon shower

