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Higgs Portal Scalars
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• Higgs Portal Model: An extension to the SM with Lagrangian

• After electroweak symmetry breaking:

• Dark sector scalar, S mixes with the Higgs Boson with mixing angle, θ

• S acquires coupling to the fermions via the Higgs Yukawa coupling and sin(θ) 

new scalar singlet

renormalizable portal couplings

arXiv:1909.11670

https://arxiv.org/pdf/1909.11670.pdf


Production of the Scalars in our Experiment
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• In our study we search for the low mass (<~200 MeV) Higgs Portal scalar bosons that decays to e+e-

• For this energy range, scalars are mostly produced in Kaon decays via a top quark in a penguin decay.

arXiv:1909.11670

• Production of neutrinos involves kaons so we can search for Higgs Portal Scalars in the neutrino beams.

• We consider three different scalar masses: 100, 150 and 200 MeV/c2

https://arxiv.org/pdf/1909.11670.pdf


MicroBooNE Experiment
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• MicroBooNE is an 85 tonne LArTPC exposed to the BNB and NuMI beams 
at Fermilab. 

• Cryostat houses the active volume of the TPC.

• Cosmic Ray Tagger to veto cosmic rays (half of the dataset).



LArTPC
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• Excellent spatial resolution and calorimetry.

• Excellent particle identification.

• Bubble chamber like images using scintillation and 
ionisation signals produced by the charged particle.

• Exploited to search for Higgs Portal Scalars.



MicroBooNE relative to NuMI beamline
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Courtesy: Krishan Mistry



Scalars from KDIF
Scalars from KDAR at target

KDIF

Production of the Scalars from KDAR
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We will study the scalars produced from the following two:

1. Scalars produced from Kaons Decaying At Rest (KDAR) at Target 
and at beam-dump.

.

Scalars 
from KDAR at 
beam-dump



Scalar from KDAR target

BNB direction
decays to e+e-

MicroBooNE Simulation

Scalars from KDIF
Scalars from KDAR at target

KDIF

.

Production of the Scalars from KDAR (Target)
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Scalars 
from KDAR at 
beam-dump



Scalars from KDIF
Scalars from KDAR at target

KDIF

.

Production of the Scalars from KDAR (Absorber)
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Scalars 
from KDAR at 
beam-dump

We are interested in the following two types of signal: 

1. Scalars produced from KDAR at target and at beam-dump.
Scalar from KDAR beam-dump

BNB direction decays to e+e-

MicroBooNE Simulation



We will study the scalars produced from the following two:

1. Scalars produced from Kaons Decaying At Rest (KDAR) at Target 
and at beam-dump.

2. Scalars produced from Kaons Decaying In Flight (KDIF)

Scalars from KDIF
Scalars from KDAR at target

KDIF

.
.

Production of the Scalars from KDIF
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Scalars 
from KDAR at 
beam-dump



Scalars from KDIF
Scalars from KDAR at target

KDIF

.

Simulation 200 MeV/c2 scalar decays

Production of the Scalars from KDIF
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.

Scalars 
from KDAR at 
beam-dump

Scalar from KDIF

BNB direction
decays to e+e-

Cosmic muon



Scalar decays
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• We look at the following two types of decay channels for our signal: 

e+

e-
1. Scalar decays: reconstructed as two showers 

2. Scalar decays: reconstructed as one shower

• This is done to increase statistics and improve sensitivity of these low mass scalars to MicroBooNE.



Preselection cuts
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• A fiducial volume cut to ensure the 
interaction vertex is located within 
the fiducial volume of the detector.

• Shower selection cut: select only the 
showers and reject tracks.

• Contained shower cut to choose 
events with exactly two showers and 
exactly one shower.

• An additional Cosmic ray tagger  
cut will be applied to the data for 
which CRT is available.

KDAR 2shr

Bkg 2shr



BDT
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After applying the preselection to our signal and NuMI background.

We trained 24 different BDT models in our analysis:

• Run1 and Run3 (2x)

• KDIF and KDAR 1-shr and 2-shr (4x)

• Three different masses of scalar: 100 MeV/c2, 150 MeV/c2 and 200 MeV/c2 (3x)

In this presentation, we will only show the plots for Ms = 150 MeV/c2 to save time.



KDIF 1-shr after BDT
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Shower Energy (MeV)

• Signal and background after applying 
pre-selection cuts and BDT.



Systematics uncertainties
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• Flux uncertainties: associated with the hadron production as well as simulation 
and modelling of the NuMI beamline.

• Cross-section uncertainties: associated with the modelling of neutrino 
interactions from the GENIE neutrino generator and re-interactions of daughter 
particles in the argon (Background only).

• Re-interaction uncertainties: associated with the re-interactions of the 
daughter particles (protons and pions) during propagation in the argon medium.

• The detector uncertainties: associated with simulation of the detector 
calculated by generating new MC samples with slightly different detector 
parameter



Signal: Flux uncertainty (KDIF 1-shr)
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Flux uncertainty

10–28%}

CV

1𝞼

Shower Energy (MeV)
Shower Energy (MeV)



Background: Flux & Cross-section uncertainty (KDIF 1-shr)
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Xsec uncertainty

(Flux)

Cross section uncertainty

12–20%}

Flux uncertainty

13–37%}

CV
1𝞼

Shower Energy (MeV)Shower Energy (MeV)



Detector systematics (KDIF 1-shr)
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Signal

Background

5–20%} 19%

MicroBooNE Simulation In Progress

MicroBooNE Simulation In Progress



Sensitivity
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• Combined all the channels for different 
masses of the scalar for our detector 
configuration and different signal 
topologies. 

• 95% CL sensitivity.

• Our sensitivity is better than the results 
published by recent reinterpretation of 
PS191 arXiv:2105.11102.

• P h e n o m e n o l o g i s t s e s t i m a t e d 
MicroBooNE sensitivity using the 
BNB arXiv:1909.11670 and we are 
exceeding these limits using NuMI 
data.

.
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Conclusions and Future tasks
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• We studied the sensitivity of the MicroBooNE detector to these low mass 
Higgs Portal scalar by including the flux uncertainty to signal, and flux and 
cross-section uncertainty to the background.

• This analysis will improve on the previous MicroBooNE limit.

• Apply my analysis to data and set the world’s best limit.
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Thank you.
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Back up slides
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KDAR 2-shr



Signal: Flux uncertainty (KDAR 2-shr)

25

For the signal, there is a rate-only flux uncertainty, with a 
value of 30% as in the MiniBooNE KDAR measurement. 
arXiv: 1801.03848

https://arxiv.org/abs/1801.03848


Background: Flux & Xsec uncertainty (KDAR 2-shr)
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Detector systematics (KDAR 2-shr)
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(Signal) (Background)
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BDT



BDT: Feature Importances
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• A total of ~470 reconstructed variables 
were fed into the BDT to find the 
variables that were crucial in separating 
the signal from background.

• An example for different masses of the 
scalar produced from KDIF 2-shr Run1 is 
shown on right.

• We notice that some variables such as 
n_tracks_ls, contained_fraction_ls etc 
are common for different masses of the 
scalar.

• First 20 most important features were 
selected in training the BDT models.

• The explanation for these variables is in 
backup slides 100 MeV 150 MeV 200 MeV



ROC Curves and separation plots, Ms = 150 MeV
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KDIF 1-shr KDIF 2-shr KDAR 1-shrKDAR 2-shr



Optimal BDT cut

31

• ~22% of the total events 
produced are KDAR and 
remaining are KDIF and 
therefore the area under the 
ROC curves for KDAR 1-shr 
and 2-shr is small 

• To improve the sensitivity of the 
MicroBooNE to these dark 
sector scalars, we evaluated the 
optimal BDT cut for which the 
value of our mixing angle 𝛉 is 
minimum.

• We use these BDT cuts for all 
the different masses of the 
scalars for Run1 and Run3.

KDAR 2-shr

KDIF 1-shr

KDAR 1-shr
KDIF 2-shr
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Comparing selection cuts for KDIF, 
KDAR and Bkg 1-shr 



Preselection cuts
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• Analysis: we have used PeLEE 
searchingfornues module to 
produce the ntuples.

• A fiducial volume cut to ensure the 
interaction vertex is located within 
the fiducial volume of the detector.

• Shower score cut to select only the 
showers and reject tracks with score 
greater than 0.5. 

• Contained shower cut to choose 
events with exactly two showers and 
exactly one shower.

• An additional CRTVeto cut will be 
applied for Run 3 data to veto the 
cosmic rays.

KDAR 1shr KDIF 1shr Bkg 1shr
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Comparing sensitivity with other 
experiments 



Sensitivity
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• To calculate the sensitivity, we use Collie Limit 
Setting Software.

• We feed all the histograms to Collie for different 
masses of the scalar: 100, 150 and 200 MeV for 
KDIF/KDAR 1–shr, 2–shr for Run1 and Run3 
with flux and cross-section uncertainty.

• The plot on right shows the current experimental  
limits on these Higgs Portal scalars. 

• The sensitivity with flux and cross-section 
uncertainty (red) and without flux and cross-
section uncertainty (purple) are shown on plot 
on right.

• Our sensitivity is better than the results recently 
p u b l i s h e d b y P S 1 9 1 e x p e r i m e n t . 
arXiv:2105.11102 

.

PS191*

Our Sensitivity

https://arxiv.org/abs/2105.11102
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Detector variations used for 
systematic uncertainties



Detector variations used for systematic uncertainties
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Krishan’s thesis

https://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2021-20.pdf
https://lss.fnal.gov/archive/thesis/2000/fermilab-thesis-2021-20.pdf

