

Recent Results of the SoLid Experiment

Imperial College London on behalf of the SoLid collaboration http://solid-experiment.org/

HEP & APP Annual Conference 2022

SoLid

4th April

Imperial College London

Outline

- SoLid physics goals
- > The SoLid experiment at SCK CEN
- > IBD analysis & expected Phase-I sensitivity
- > Conclusion

Experiment Goals

Probe the Reactor Antineutrino Anomaly (RAA)

Imperial College London

3+1 neutrino model

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$
$$\frac{\Delta m_{\text{new}}^2 \gg \Delta m_{12}^2, \Delta m_{13}^2}{|U_{e4}|^2, |U_{\mu 4}|^2, |U_{\tau 4}|^2}$$
$$P_{ee} = 1 - \sin^2 2\theta_{\text{new}} \sin^2 \frac{\Delta m_{\text{new}}^2 L}{4E}$$
$$\sin^2 2\theta_{\text{new}} = 4 |U_{e4}|^2 (1 - |U_{e4}|^2)$$

Measure precisely the U-235 antineutrino spectrum

Unexpected distortion at ~ 5 MeV reported by antineutrino experiments at power (LEU) reactors (²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U isotopes).

Recent indication from short-baseline liquid scintillator experiments at ²³⁵U research (HEU) reactors. arXiv:2107.03371 [nucl-ex]

Experiment Location

Experimental site

- SCK CEN BR2 research reactor (Mol, Belgium)
- > Very close to the reactor core (6 9 m)
- Low overburden (~ 6 8 m.w.e)

BR2 reactor

- Compact core (50 cm effective diameter)
- Highly enriched ²³⁵U (> 93.5%)
 nuclear fuel
- Variable operating power (45 -80 MW) for an average of 6 cycles per year (140 days)
- Low-level reactor background (gamma, neutron)

Imperial College

London

ID SCK+CEN

SoLid Technology

Motivations

- Plastic scintillator (ELJEN EJ-200) provides alternative technology for antineutrino measurement
 - Very good **linearity** of response

- Highly segmented detector allows direct access to the **positron energy** and identification of **annihilation gammas**
 - Event topologies allow classification of signal and background

Challenges

- No direct gamma-neutron PSD
 - Reduction of high backgrounds requires **multivariate ML** techniques
- Need detailed understanding of complex detector
- Large number of readout channels and parameters to calibrate

Imperial College

London

Imperial College London

Antineutrino Detection Principle

Inverse beta decay (IBD) interaction of electron antineutrinos detected using combination of two scintillators:

PVT cube (5 cm) for prompt signal: ES (electromagnetic scintillation)

- > Energy deposit by positron carrying the antineutrino energy
- > Two annihilation gammas (511 keV) are emitted

⁶LiF:ZnS(Ag) sheets for delayed signal: NS (nuclear scintillation)

- Sheets cover two faces of each cube
- > A thermal neutron is captured ~64 μ s after the prompt signal

$$n + {}^{6}Li \rightarrow {}^{3}H + {}^{4}_{2}\alpha$$

Use the **delayed coincidence** between ES and NS signals to tag IBD interactions

Imperial College London

Phase-I Detector

12,800 5 cm PVT cubes (1.6 ton fiducial volume)

3,200 readout channels

- Wavelength shifting fibers in X-Y directions
- ➢ Signals detected by MPPCs (SiPM)

Data-taking with Phase-I detector from April 2018 to July 2020.

Full detector comprises 5 independent modules.

Imperial College London

Phase-I Detector

SoLid container at BR2 prior to completion of water wall.

SoLid detector inside the container prior to installation of final module.

Phase-I Dataset

Data on tape

- Two years of data (April 2018 July 2020)
- > 14 reactor cycles during this time

Data quality

- Physics-quality data is collected only during ideal conditions with chilled container, sufficiently low humidity in the container and full shielding
- The data is passed through multiple data quality criteria to find and reject faulty data
- Selected respectively ~300 days and ~180 days of sufficiently high quality reactor-on (Ron) and reactor-off (Roff) data for an oscillation analysis

Background Sources

Fast neutrons (external)

- > Fast neutrons induced by cosmic-ray shower & spallation
 - Proton recoil events: ES
 - Neutron capture: NS

BiPo (internal)

- > Derived from $^{238}U/^{230}$ Th series
 - ²¹⁴Bi decay (e⁻, γ): ES
 - $\circ~^{214}\text{Po}$ decay (a): NS
- Unexpectedly high contaminant in LiF:ZnS(Ag) sheets
 - $\circ~$ ~ 2 orders of magnitude above IBDs before selection

Accidental (external)

- ➤ Gamma rays from ⁴¹Ar decay (reactor)
- > Radon emanation from the building

BiPonator: PSD Method

1 day reactor-off

Imperial College London

Imperial College London

Event Selection for IBD Analysis

Pre-selection for signal and BiPo

- Correlation between ES and NS
- > Energy information of ES $\circ E_{prompt}$: [1.5, 7] MeV

Topological information, in particular the presence of the *annihilation gammas*, also extremely useful for event classification.

Event Topology Classification

Annihilation gammas reconstruction

- Method 1: Locate first gamma cluster then split the detector into two hemispheres and search for second detached cluster.
- Method 2 : Track gammas by minimizing likelihood function of cube positions according to Compton scattering cross sections

Event classification based on identification of 0, 1 or 2 gamma clusters

Imperial College London

IBD Analysis & Signal Extraction

Uniform Boosted Decision Tree (uBDT)

arXiv:1305.7248

- Optimise discrimination whilst ensuring uniform efficiency for specific variables
 - In this case, energy of the prompt (ES) signal and its plane position (zP) in the detector

uBDT output for

2-gamma category

Background subtraction

- Subtract BiPo and accidental components
- Subtraction of atmospheric (fast neutron) component requires pressure correction factor (f) derived from reactor-off data

14

Imperial College London

Antineutrino Signal

Trending plot of excess per day is well behaved, yielding an IBD excess consistent with zero for reactor-off data

Analysis on the open dataset (first unblinded reactor-on period) with the optimised uBDT selection gives:

- IBD excess of 90 events per day
- Signal-to-background ratio (S:B) of 0.21

16

Phase-I Oscillation Sensitivity

 Preliminary sensitivity to sterile neutrino oscillations (3+1 model here) estimated with Feldman-Cousins construction

SoLid

- ➤ Systematic uncertainties related to the light yield (LY), energy scale and neutron capture efficiency are taken into account ⇒ statistically dominated
- Ongoing effort to assess impact of remaining systematics and improve sensitivity with new analysis techniques!

Antineutrino Direction

- ➤ SoLid is sensitive to the direction of the incident antineutrinos ⇒ reactor monitoring applications
- IBD neutrons are boosted in direction of antineutrino momentum so detector segmentation allows measurement of non-zero average displacement (Δr) between ES and NS signals
- Preliminary MC studies predict a 3σ measurement with 630 events at S:B ~ 0.2 (i.e. one week of data-taking)

Imperial College London

SoLid Phase-II: Detector Upgrade

Upgrading the detector with new MPPCs (S14 series)

- ➤ Better photon detection efficiency compared to S12 series ⇒ translates to a 40% increase in light yield
- Cross-talk reduced by a factor of two
- Improved energy resolution
- > Expected improvement of **annihilation gamma** reconstruction

Taking data with Phase-II detector since late 2020

Conclusion

- > SoLid has approximately 2 years of data with the **Phase-I detector**
 - Alternative technology complements other experiments
- Detector response well understood
- > MVA and ML techniques used to reduce high rates of background
 - Atmospheric neutrons and BiPo
- Successful detector upgrade and data-taking underway with Phase-II
- Exclusion contour for Phase-I dataset coming soon!

Imperial College London

Thank you !

SoLid

https://iopscience.iop.org/article/10.1088/1748-0221/16/02/P02025

https://iopscience.iop.org/article/10.1088/1748-0221/14/11/P11003

Imperial College London

Backups

Detector Calibration

Calibration

- Gamma sources used for energy calibration of the detector.
- Linearity and homogeneity of the detector energy response tested at the percent level
- > AmBe and Cf neutron sources to measure **neutron efficiency**

Imperial College London

SoLid DiDonatom MI

Imperial College London

BiPonator: ML PSD Method

CNN Input

CNN Factory

GOAL:

Alpha / Neutron discrimination improvement to reduce more BiPo background

CNN Output

Ex : inference on Roff dataset (54.76% of alphas and 45.24% of neutrons)

23

SoLid Event Reconstruction

Imperial College London

1. Time clustering to group signals from different fibers

Identifying cluster by using cluster length and integral of amplitude / amplitude ratio
 "ES", "NS", "Muon track"

3. Make correlations between ES and NS

An ES-NS coincidence candidate

ES energy is estimated by using Maximum-Likelihood Expectation Maximization (ML-EM) algorithm

Imperial College London

BiPo for Detector Response Model

Utilise BiPo background to verify the detector response model.

- Select a high-purity **BiPo sample** close to the signal region.
- ~180 days of Phase-I reactor-off data used for comparison with MC.
- ➤ Very good data-MC agreement ⇒ prompt energy at the percent-level up to 3 MeV
- Systematic uncertainties can be derived from disagreement between data and MC

Selection	Variables and Cuts
Pre-selection	Δ T \in [200:500] μ s
	$\Delta \ \mathbf{X} \in$ [-1:0]
	$\Delta \mathbf{Y} = 0$
	$\Delta \mathrm{R} \leq 1$
	Prompt Energy Calibrated \in [1, 4] MeV
+ BiPonator Selection	0.22 > BiPonator < 0.65

Two-gamma Antineutrino Topological Selection

- I. **New analysis** based on event topologies (taking maximal advantage of detector segmentation).
- 2. Preliminary analysis of events with **both annihilation gammas**.
- 3. Multivariate analysis for remaining background rejection
 - a. Each background component determined with multi-dimensional (Δt , Δr) simultaneous fit.
- 4. Good agreement between excess and predicted excess, with S/B larger than one:

 $N(\overline{\nu}/\text{day}) = 21.8 \pm 2.1 \text{ (stat)} \pm 1.5 \text{ (syst)}.$

5. Beyond Phase-I this approach will benefit from **detector upgrade** features

Imperial College

London