Beauty meson to doubly open charm decays

Fionn Bishop

University of Cambridge

IOP HEPP & APP Annual Conference 06/04/22

Introduction - $B_c^+ \rightarrow DD$

- Interference between $b \rightarrow c$ and $b \rightarrow u$ tree diagrams $\rightarrow CP$ violation
- Similar amplitudes $\rightarrow \mathcal{A}^{CP}(B_c^+ \rightarrow D_s^+ D_+^0) \sim \mathcal{O}(1)$ $\rightarrow \text{ Sensitivity to } \gamma \equiv \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$ [PRD 65 034016, PRD 62 057503, PLB 286 160-164]

PRD 62 057503

Introduction - $B_c^+ \rightarrow DD$

In general:

$$\mathcal{B}(B_c^+ \to D_s^+ \overline{D}{}^0) \sim 10^{-6}$$

$$\mathcal{B}(B_c^+\!
ightarrow D^+\overline{D}{}^0)\sim 10^-$$

[PRD 86 074019]

- But BF predictions vary by up to an order of magnitude
- Hadronic B decays could be affected by NP [EPJC 80:951, PRD 102 071701, JHEP 10 (2021) 235]
- Small production cross section $(rac{f_c}{f_u} \sim 0.8\%)
 ightarrow {\sf Rare}$

 $\rightarrow\,$ No evidence in Run 1 $_{\rm [NPB~930~563-582]}$

$\mathcal{B}(B_c^+ \to DD)$

JHEP 12 (2021) 117

- Search for 16 $B_c^+ \rightarrow DD$ decays in 6 channels: $D_{(s)}^{(*)+} \overset{(-)_0}{D}^0$
 - Fully and partially reconstructed decays
 - $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K \pi (\pi \pi)$, $D^+_s \rightarrow K K \pi$, $D^+ \rightarrow K \pi \pi$
- Full Run 1+2 dataset: 3 fb⁻¹ 2011-12; 6 fb⁻¹ 2015-18
 - Selections to reduce combinatorial and peaking backgrounds
- Boosted Decision Tree (BDT) reduces combinatorial background
 - Discard lowest purity data
 - Split remainder into low/medium/high purity samples

$\mathcal{B}(B_c^+ \to DD)$

JHEP 12 (2021) 117

- Fit simultaneously to BDT samples and D^0 final states
- Measure relative to abundant $B^+
 ightarrow D\overline{D}{}^0$

$$\frac{f_c}{f_u}\frac{\mathcal{B}(B_c^+ \to DD)}{\mathcal{B}(B^+ \to D\overline{D}^0)} = \frac{N_{B_c^+ \to DD}}{N_{B^+ \to D\overline{D}^0}} \frac{\varepsilon_{B^+ \to D\overline{D}^0}}{\varepsilon_{B_c^+ \to DD}}$$

• Efficiency (ε) ratio from simulation

글 🖌 🔺 글 🕨

$\mathcal{B}(B_c^+ ightarrow DD)$ - Results

- 3.4 σ evidence for $B_c^+ \rightarrow D_s^+ \overline{D}^0$
- External inputs for $\mathcal{B}(B^+ \to D_s^+ \overline{D}^0)$ and $\frac{f_c}{f_u}$
- ${\cal B}(B^+_c o D^+_s \overline D^0) =$
 - $\begin{array}{c}(3.5^{+1.5+0.3}_{-1.2-0.2}\pm1.0)\times10^{-4}\\(\text{stat},\text{sys},\text{ext})\end{array}$
 - Dominant systematics: Signal and background shapes, B⁺_c kinematic correction
 - Two orders of magnitude larger than SM prediction

JHEP 12 (2021) 117

 $\mathcal{B}(B_c^+ \to DD)$ - Upper limits

- JHEP 12 (2021) 117
- Upper limits on *B* at 90(95)% CL
- Use frequentist CLs method implemented in GammaCombo

$$\begin{split} \mathcal{B}(B_c^+ &\to D_s^+ \overline{D}{}^0) < 7.2 \, (8.4) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D_s^+ D^0) < 3.0 \, (3.7) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^+ \overline{D}{}^0) < 1.9 \, (2.5) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^+ D^0) < 1.4 \, (1.8) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^{*+} \overline{D}{}^0) < 3.8 \, (4.8) \times 10^{-4} \\ \mathcal{B}(B_c^+ &\to D^{*+} D^0) < 2.0 \, (2.4) \times 10^{-4} \end{split}$$

plus ten limits on
$$B_c^+
ightarrow D^{(*)} D^{(*)}$$
 using partially reconstructed decays

문 🛌 문 🖃

Introduction - $\mathcal{A}^{CP}(B^- \rightarrow DD)$

Tree and penguin interference produces small $\mathcal{A}^{CP}(B^{-/0} \rightarrow DD)$ $\mathcal{A}^{CP}(D^{-} \rightarrow DD)$

• \mathcal{A}^{CP} could be enhanced by NP [PRD 79 055004, CTP 56 125, IJTP 55 5290]

Deviation from isospin symmetry expectations between $B^- \rightarrow D^-_{(s)}D^0$ and $\overline{B}{}^0 \rightarrow D^-_{(s)}D^+$ could also indicate NP [PRD 91 034027, PRD 78 033011]

$\mathcal{A}^{CP}(B^- \to DD)$

Measure A^{CP} of seven fully or partially reconstructed B⁻ → D^{(*)-}_(s)D^{(*)0} decays
 Full Run 1+2 dataset: 3 fb⁻¹ 2011-12; 6 fb⁻¹ 2015-18

Table 1: CP asymmetries to be measured in each channel, their PDG average and experiments which have previously measured this quantity. All previous measurements are consistent with zero and with SM predictions.

Channel	Quantity	PDG average	Previous Measurements
$B^- ightarrow D_s^- D^0$	$ \begin{array}{l} \mathcal{A}^{CP}(B^- \to D^s D^0) \\ \mathcal{A}^{CP}(B^- \to D^{*-}_s D^0) \\ \mathcal{A}^{CP}(B^- \to D^s D^{*0}) \end{array} $	(-0.4±0.7)% - -	[JHEP 05 (2018) 160 [LHCb]] - -
$B^- ightarrow D^- D^0$	$\mathcal{A}^{CP}(B^- o D^- D^0)$ $\mathcal{A}^{CP}(B^- o D^- D^{*0})$	$(1.6 \pm 2.5)\%$ $(13 \pm 18)\%$	[JHEP 05 (2018) 160 [LHCb], PRD 77 091101 [Belle I], PRD 73 112004 [BaBar]] [PRD 73 112004 [BaBar]]
$B^- \rightarrow D^{*-} D^0$	$\mathcal{A}^{CP}(B^- ightarrow D^{*-}D^0) \ \mathcal{A}^{CP}(B^- ightarrow D^{*-}D^{*0})$	$(-6\pm13)\%\ (-15\pm11)\%$	[PRD 73 112004 [BaBar]] [PRD 73 112004 [BaBar]]

Fionn Bishop, University of Cambridge

▶ ▲ 볼 ▶ 볼| ¥ ● ○ ○ ○

 $B_{\ell_{\lambda}}^+ \rightarrow DD, 06/04/22$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ��

$$\mathcal{A}^{CP} = \mathcal{A}_{\textit{raw}} - \mathcal{A}_{P} - \mathcal{A}_{D}$$

Production asymmetry $A_P \equiv \frac{\sigma(B^-) - \sigma(B^+)}{\sigma(B^-) + \sigma(B^+)}$

• $B^+ \to \overline{D}{}^0 \pi^+$ and $B^+ \to J\!/\psi K^+$

• Detection asymmetry $A_D \equiv \frac{\varepsilon(B^-) - \varepsilon(B^+)}{\varepsilon(B^-) + \varepsilon(B^+)}$

- Calibration samples corrected for kinematics
- Largest: $\mathcal{A}_D(K^-\pi^+) \sim -1\%$. $\Delta \mathcal{A}_{raw}$ in $D^+ \to K^-\pi^+\pi^+$ and $D^+ \to K^0_S \pi^+$ samples.
- Pion tracking
- Particle ID requirements
- L0 hardware triggers

Table 2: Statistical and systematic uncertainties on $\mathcal{A}^{\mathcal{O}}$ and comparison to existing world averages. Statistical uncertainty is entirely from \mathcal{A}_{raw} .

Decay	Run1+2	PDG
$B^- \rightarrow D_s^- D^0$	$(X \pm 0.2 \pm 0.4)\%$	$(-0.4 \pm 0.7)\%$
$B^- ightarrow D_s^{*-} D^0$	$(X \pm 1.3 \pm 0.7)\%$	-
$B^- ightarrow D_s^- D^{*0}$	$(X\pm1.7\pm0.9)\%$	-
$B^- ightarrow D^- D^0$	$(X \pm 1.0 \pm 0.4)\%$	$(1.6\pm2.5)\%$
$B^- ightarrow D^{*-} D^0$	$(X\pm1.6\pm0.6)\%$	$(-6\pm13)\%$
$B^- ightarrow D^- D^{*0}$	$(X \pm 2.2 \pm 1.3)\%$	$(13\pm18)\%$
$B^- ightarrow D^{*-} D^{*0}$	$(X \pm 2.4 \pm 2.4)\%$	$(-15\pm11)\%$

Dominant systematics:

- Contribution of $\mathcal{A}^{CP}(B^+ o J/\psi K^+)$ to \mathcal{A}_P
- Calibration sample size for $K^-\pi^+$ detection asymmetry
- Combinatorial, $B_s^0 \rightarrow DD$, and $B \rightarrow D^{**}D$ modelling

Anticipate publication this year

・ロト ・ 同 ト ・ 三 ト ・ 三 三 ・ りゅつ

Conclusion

- Recent and in-progress results on $B^+_{(c)} \rightarrow DD$ decays from Run 1+2 LHCb data
- Search for sixteen $B_c^+ \rightarrow DD$ decays
 - 3.4 σ evidence for $B_c^+ \rightarrow D_s^+ \overline{D}^0$
 - \blacksquare Upper limits on ${\cal B}$
- *A^{CP}* of seven B[−] → DD
 decays in progress
 - Substantial improvements in precision
 - BSM sensitivity

∃ >

Backup

Fionn Bishop, University of Cambridge

< ∃ > < ∃

JHEP 12 (2021) 117

イロト イヨト イヨト イヨト

Upper limits at 90(95)% CL

$$\begin{split} &\mathcal{B}(B_c^+ \to D_s^{*+} \overline{D}^0) < 5.3(5.7) \times 10^{-4} \\ &\mathcal{B}(B_c^+ \to D_s^{*+} D^0) < 0.9 (1.0) \times 10^{-3} \\ &\mathcal{B}(B_c^+ \to D_s^+ \overline{D}^{*0}) < 5.3 (5.7) \times 10^{-4} \\ &\mathcal{B}(B_c^+ \to D_s^+ D^{*0}) < 6.6 (8.4) \times 10^{-4} \\ &\mathcal{B}(B_c^+ \to D^+ \overline{D}^{*0}) < 6.5 (8.2) \times 10^{-4} \\ &\mathcal{B}(B_c^+ \to D^+ D^{*0}) < 3.7 (4.6) \times 10^{-4} \\ &\mathcal{B}(B_c^+ \to D_s^{*+} \overline{D}^{*0}) < 1.3 (1.5) \times 10^{-3} \\ &\mathcal{B}(B_c^+ \to D_s^{*+} D^{*0}) < 1.3 (1.6) \times 10^{-3} \\ &\mathcal{B}(B_c^+ \to D^{*+} \overline{D}^{*0}) < 1.0 (1.3) \times 10^{-3} \\ &\mathcal{B}(B_c^+ \to D^{*+} D^{*0}) < 7.7 (8.9) \times 10^{-4} \end{split}$$