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Introduction

LHCb took 9fb! data between 2011 and 2018

This work analyses B — (D — K3m)K type events

The detector is specialised for precision flavour physics measurements

e Measurement of the CKM angle ~ - describes CP violation in b — u

quark transition processes
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CKM Matrix

® The CKM matrix elements describe quark transition probabilities

Vud Vus Vub
Vcd Vcs Vcb
Via Vis Vi

® Must be unitary - one unitarity condition is represented by the
unitarity triangle
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oy =67 %4
® Expect similar precision from \ —_/
this analysis T Dk"

® Rate for B — DK*; D — f for some final state f depends on v

® Rate ratios (in a region of final state phase space Q):

[(B~ — DK=,D — f)q
(B~ — DK—,D — f)g
r(BY — DK*,D — f)
[(B* — DK',D — f)q

= r,%ﬁ +r3+ rD7QrB|Zé‘COS(6B - 5,’3 —7)

b\

= rp.q + 15 + rpars| Zh|cos(0s — 5 + )

1" Updated LHCb combinedation of the CKM angle 4", LHCb Collaboration, 2020,
http://cds.cern.ch/record /2743058
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D Mixing

® The K3r final state is accessible by both D° and D°
® These can decay directly or via mixing:

DCS

T

DO f

Miz ° j

Interference between these amplitudes is quantified by Z{Z

ZS’; can be measured using LHCb data

It has also been previously measured using quantum-correlated cc
pairs, at e.g. CLEO and BES-III

Best precision comes from combining these measurements
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Measuring Z%, v

® \We can measure ng from LHCb data by fitting to D° decay times
® Combine Zé from fit with result from CLEO and BESIII to improve

precision
® From simulation:
CLEO: LHCb: Combined:
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® We then can then use this value of Zé to extract
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Efficiency

Correct for the detector acceptance - some events are missed in our
reconstruction etc.

Four body final state = 5-dimensional phase space

To correct for phase space and decay time efficiency, will therefore
need a 6d efficiency model

Want to fully describe this efficiency, including all correlations
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Reweighting Strategy

® Compare LHCb MC to generator level events to extract efficiency

® Perform a histogram division to find €(t), correct for this then use a
BDT to correct for the phase space efficiency (and keep correlations
with time)

® Toy illustration of the method:

[ Generator
1 MC

p: time weighted p: time and p weighted

[
& time weighted & time and p weighted
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Validation

® \We have several ways to validate the method

Projections - necessary but insufficient

LHCb Unofficial Simulation
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® Perform a Monte Carlo integral to numerically estimate Zé for our

MC

Z Numerical Integral

® Split the datasets into 10 equal chunks - evaluate Zg’; for each
® Expect reweighted Zg’; to match up with generator Zg’; (“AmpGen")
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Conclusion

B — (D — K3m)K events at LHCb give a powerful way to constrain

~
Correcting for detector efficiency smoothly across the phase space is
an important step in the analysis

We have a BDT based reweighting method to correct for the detector
efficiency

Initial validation seems to show it largely works
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Backup

Prior Art

® This project follows on from previous work in this group; notably Sam
Harnew's thesis

® Previously predicted that we could measure v to within 4°

® Recent amplitude models have the potential to improve our phase
space binning + give even better precision (1-2°7)

D-mixing (binned) BES III (binned) D-mixing (binned) with
alone alone BES III binned

(From CERN-THESIS-2015-317)
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Backup

RS/CF and WS/DCS Events

® Two types of decay for the analysis - "right sign” / " Cabibbo
favoured” (RS/CF), "wrong sign” / "doubly Cabibbo suppressed”
(WS/DCS)

e K digram shown in this slide but it's the same for K37
e ie. in this case D decays rapidly to f; D slowly

u »- u m
° K+ DY
C
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A
=

RS/CF WS/DCS
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Backup
Analysis Strategy

Time-dependent ratio of DCS to CF decay rates:

r(p° f) 2452
% ~ 13 + rp.a (YRe(ZL) + xIm(Zh)) (Tpt) + £ (Tpt)?

with
My My T
-, Y=o,

Where My and 1 o are the mass + width of the D mass eigenstates

X

Fit to this equation to constrain Z
Get x and y from external input

Combine ZS’; from fit with result from CLEO and BESIII to improve
precision

Given the B — (D — K3m)K rates, we can then extract ~y

Perform the analysis in phase space bins - different value of Zgg in each
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Backup

Phase Space Binning

° ZS’; describes average interference over a region of phase space Q2
® |f we split phsp into regions we get an expression for « in each region

® This has the potential to give us increased sensitivity

[Z| = 0.35

T

Imag(zy,)
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The distribution of Zé for simulated DCS events. From Sam
Harnew's Thesis CERN-THESIS-2015-317
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Backup

Dimensionality and Efficiency Parameterisation

® Four body decay = 5 free

parameters; 6 including time [ /
e Using Cabibbo-Maksymowicz / £N e
parameterisation?: / U
K*rtplane K* [ T @ plane

® Toy phsp D° — Ktn—ntr™ —
evts:

2Cabibbo, N., & Maksymowicz, A. (1965)
Backup 6/13



Backup

Parametrising mixing

e Define the following amplitudes for suppressed and favoured decays to
a final state f:

Alp) = <fp ‘ A ‘ D°>
B(p) = <fp ‘ I:I‘50>
e |f we're looking at all decays in a region of phase space €2, we are

interested in: Jb
A= [ AE)AB) S dp
Q dp

do
Bzz/BpB*pdp
f= | BEIB PG
® |nterference described by the cross term:

Jo Alp)B*(p) 45 dp

zf =
Q@ AoBq
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Backup

Z Numerical Integral

Charm interference parameter Rx3.e k3= = Z is a key parameter in
this analysis

We can estimate it using a numerical integral:

7 Z ACF(pi)AA?CS(Pi)Wi (1)

where w; is each event's weight and N is normalisation:

\/Z Acr(pi)Atr(Pi)w, \/Z Apcs(Pi)Apes(Pi)wi  (2)

We can evaluate the amplitudes using AmpGen

Ideally, we should get the same value of Z from a dataset generated
with AmpGen and our reweighted LHCb MC
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Backup

Combined Reweighter: Alternate parameterisation
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Backup

Combining distributions |

e(p, t) should be the same for suppressed D — K+37 (DCS) and
favoured D° — K*+37 (CF) events

Our reweighter should be trained on Generator and MC datasets
MC should be the combined CF + DCS LHCb MC datasets

Generator should be a combination of CF + DCS generator-level
events

Need to combine CF + DCS generator-level MC in the “right”
proportion

We don’t know what this is a priori, but we can calculate it...
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Backup

Combining distributions ||

We generated aAF + BAPCS; we dont know « or f3
We reconstruct e« ASF + ¢3APCS

Introduce some factors CF = a [ ¢(x)dx, CPS = 3 [ ¢(x)dx

These can be evaluated with e.g.

a/e(x)dxza/e(x)ﬁzgg dx = / (ae(X)ACF(X)) ACF

Backup

Z ACF(X

CF MC
®3)
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Backup

Combining distributions Il

Reminder: factors CF = a [ e(x)dx, CP = 3 [ e(x)dx

aACF+BADCS — CCFACF CDCS ADCS
J €(x) is a constant factor that we can ignore

. CF DCs CF DCS
We can write ¢(x) = “4+5A cal _tebA x [e(x

i.e. we can find the right numbers (C¢F, CP3) of evts to generate
with AmpGen by using the amplitude models ACF, ADCS

Generate CF and DCS events in the proportion C¢F:CP¢S

This is really just a general way to add together two LHCb MC
samples
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Nwé ratio

Backup

WS :
7o Ratio
MC was generated with no D mixing - expect ‘g—g counts to be
constant with time
This ratio is what we fit to to measure Zg’;, so getting the right
behaviour here is important
- MC . AmpGen . Reweighted
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