Search for local CP violation in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ decays using the Energy Test method

John Cobbledick, Shantam Taneja

Mark Williams, Marco Gersabeck, William Barter

IoP HEP & APP 2022

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨー のへで

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 000000000000
Overv	view					

1 Motivation

- 2 Energy Test Method
- 3 Event Selection
- 4 Sensitivity Studies
- 5 Data Driven Validation
- 6 Conclusion

- * ロ > * 個 > * 注 > * 注 > - 注 - の < @

Motivation ●○○	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 00000000000
Moti	vation - 7	The Cha	arm Sect	or		

- CP violation (CPV) only recently discovered in charm when compared with the beauty and strange sectors
 - So far, only detected in $D^0
 ightarrow h^+ h^-$ decays
 - Phys. Rev. Lett. 122 (2019) 211803
- $\bullet\,$ CPV has been measured and predicted by the SM to be of order $(10^{-4})-(10^{-3})$
- Important to expand the search for CPV to other charm decays

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup
000	00	0000	000000	000		00000000000
Moti	vation					

- Higher sensitivity possible by searching for local CPV in multibody decays
- Large interference contributions as the strong phase varies across phase space
- $D^0 \rightarrow \pi^- \pi^+ \pi^0$ is a promising channel for CPV detection.
 - Main contribution is due to singly Cabibbo suppressed (SCS) decay.
 - Standard Model expectation: CPV: O(10⁻³)

Phys.Rev.D.75.036008

May be enhanced by new physics.

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+$

				-		
000						
Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup

Motivation - Experimental Status

- Energy Test using LHCb Run 1 data ($\mathcal{L}_{int} = 2fb^{-1}$) with a signal Yield \sim 570k
 - $p = (2.6 \pm 0.5)\%$ Phys. Lett. B 740 (2015) 158
- Binned χ^2 method used by BaBar with a signal yield \sim 82k
 - $\mathcal{A}_{CP} = (0.31 \pm 0.41)\%$ Phys. Rev. D 78 (2008) 051102
- Global asymmetry: $\mathcal{A}_{CP} = (0.3 \pm 0.4)\%$ PDG

Motivation	Energy Test Method ●○	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 000000000000
Energ	gy Test N	lethod				

- Model-independent, unbinned statistical test sensitive to local CPV
- Test statistic for a distance function ψ_{ij} :

$$T = \underbrace{\sum_{i,j>i}^{n} \frac{\psi_{ij}}{n(n-1)}}_{\text{All } D^0 \text{ Candidates}} + \underbrace{\sum_{i,j>i}^{\bar{n}} \frac{\psi_{ij}}{\bar{n}(\bar{n}-1)}}_{\text{All } \bar{D^0} \text{ Candidates}} - \underbrace{\sum_{i,j}^{n,\bar{n}} \frac{\psi_{ij}}{n\bar{n}}}_{\text{Opposite Flavour Pairs}}$$

• Distance function scales described by Gaussian with parameter δ :

$$\psi_{ij} = e^{\frac{-d_{ij}^2}{2\delta^2}}$$

- Distance computed from Dalitz plane
- T value converted to p-value under null hypothesis of CP symmetry, using data-driven approach (see next slide)

Parkes. C et al, 2017 J. Phys. 44 085001

T Va	lue and S	Scaling	Method			
000	00	0000	000000	000		00000000000
Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup

E

- Calculate T-value distribution for null hypothesis by resampling (permutating) data, with random flavour assignments
- P-value defined by counting number of permutations with larger T-value than real data
- Permutations are CP symmetric by construction
- Large nominal T value \Rightarrow asymmetry between samples.

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+$

イロト イボト イヨト イヨト 二日

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 00000000000
Selec	tion Ove	rview				

- Analyse data from LHCb Run 2 (2015-2018) ($\mathcal{L}_{int} = 5.9 fb^{-1}$)
- Use prompt $D^{*+} \to D^0 \pi_s^+$ where the soft pion, $\pi_s,$ tags the flavour of D^0
- $\pi^0(\rightarrow\gamma+\gamma)$ can be reconstructed in two ways based on the diphoton angle:
 - **1** Merged pion: diphoton energy deposit in same ECAL cluster.
 - **2** Resolved pion: diphoton energy deposited in different cluster.
- Selection strategy is to use a loose pre-selection followed by an MVA

Motivation	Energy Test Method	Event Selection ○●○○	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup 000000000000
Even	t reconst	ruction				

Decay Topology

- Phase space computed by requiring:
 - **1** D^* originates from the primary vertex.
 - 2 D^0 mass is constrained to the PDG value.

Offline Selection

- Require candidates to pass hardware (L0) and software trigger requirements (HLT1 & HLT2)
- $|m_{\pi^0}$ -134.9770| < 28 MeV (Merged π^0 s only)
- $|m_{D^0}$ -1864.83 $| < 60 \, {
 m MeV}$
- Require D⁰ decay products be displaced from PV

- 32

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup 000000000000
MVA	Strategy	1				

- MVA trained on real sPlotted data with k-folding (k=2) separately for merged and resolved samples
- BDT cut chosen to optimise signal significance $\left(\frac{S}{\sqrt{S+B}}\right)$
- BDT input variables exploit final state kinematics, decay topology, and vertex quality

 Δm fit of resolved sample after applying offline selections

イロト 不得 トイヨト イヨト 二日

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup 000000000000
ΔM	Fits					

- Post-MVA fits to Resolved (left) and Merged (right) samples.
- Yield is 4 times larger than Run1 analysis
- Resolved: Purity after (before) the cut is \sim 83% (50%) between 143.6< ΔM <147.2 MeV
- Merged Purity is 91%, no MVA cut applied

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+$ イロト 不同下 不同下 不同下 一日

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 00000000000
Sensi	tivity Stu	ıdies				

- Energy Test has a single tunable parameter, $\delta,$ optimised using toy simulation
- Generate toys in a number of different CPV scenarios and scan over a range of δ values to find the minimum p-value
- Generate signal phase space using Laura assuming D^0 and $\overline{D^0}$ have identical amplitude models. Comput. Phys. Commun., 231 (2018) 0010-4655
- Create realistic toys by incorporating efficiency and background effects into generated phase space

Sensi	tivity Sti	udies - A	Amplitud	e Model		
Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 000000000000

• Amplitude model taken from BaBar analysis of

 $B^{\pm} o D^0 (o \pi^- \pi^+ \pi^0) K^{\pm}$ Phys. Rev. Letters, 99 (2007) 251801

Resonance	Amplitude a_n	Phase ϕ_n (°)	Fit Fraction f_n (%)
$ ho$ (770) $^+$	0.823	0	67.8
$\rho(770)^{0}$	0.512	16.2	26.2
$\rho(770)^{-}$	0.588	-2.0	34.6
$ ho(1450)^+$	0.033	-146	0.11
$ ho(1450)^0$	0.055	10	0.30
$\rho(1450)^{-}$	0.134	16	1.79
$\rho(1700)^{+}$	0.202	-146	0.11
$ ho(1700)^0$	0.055	10	0.30
$ ho(1700)^{-}$	0.134	16	1.79
$f_0(400)$	0.091	8	0.82
$f_0(980)$	0.050	-59	0.25
$f_0(1370)$	0.061	156	0.37
$f_0(1500)$	0.062	12	0.39
$f_0(1710)$	0.056	51	0.71
$f_2(1270)$	0.115	-171	1.32
non resonant	0.092	-11	0.84

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup
Reali	stic Toys					

- T-value will be affected by resolution effects, efficiency and background candidates in the signal. This may shift the optimal value of δ
- Model detector resolution and efficiency in a data driven manner, using multivariate BDT reweighter
- Model background in data-driven manner, again with BDT reweighter

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 000000000000
Dete	ctor Effic	iency N	lodel			

- Train a BDT to re-weight Generator-level toy to match phase space of signal window in Δm , ignoring flavour
- Accept-reject candidates from a generator-level toy to produce a toy with detector efficiency incorporated
- Train on sPlotted signal between $|\Delta m 145.4| < 1.8$ MeV
- 10M generator level candidates used in training and testing

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 000000000000
Back	ground M	lodel				

- Train a BDT to re-weight uniformly distributed phase space to match phase space of signal channel sidebands
- Accept-reject candidates from uniformly distributed phase space to produce toy background
- Train on sPlotted background candidates with $\Delta m < 142 ||\Delta m > 150 \text{ MeV}$

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup 000000000000
Reali	stic Toys	- δ Sca	n			

- Find optimal δ by inserting phase/amplitude asymmetries in dominant/sub-dominant resonance and generating ensembles of toys
- Each point consists of the mean p-value for a set of 5 unique toys
- Each p-value is calculated with 10M permutations
- Asymmetries inserted into $ho(770)^{\pm}$

p-values for phase (left) and magnitude asymmetries (right) in $ho(770)^+$

イロト 不得 トイヨト イヨト 二日

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation ●○○	Conclusion	Backup 000000000000
Cont	rol Chanr	nel				

- Use Control mode to check influence of systematic effects introduced by detection and production asymmetries
- Use the Cabibbo Favoured $D^0 \rightarrow K^- \pi^+ \pi^0$ as control channel
- Selection aligned between control and signal modes (other than PID on kaon)
- Yield approximately 8 times that of signal channel

<u> </u>						
000	00	0000	000000	000		0000000000
Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup

Control Channel - Signal Region

- Run Energy Test over the D^0 region, 143.6< ΔM <147.2 MeV
- Split into 8 independent sub-samples, each with the same yield as the signal sample
- Plot p-values from the 8 tests
- Flat p-value distribution indicates consistency with CP symmetry hypothesis

P-Value distribution for the combined resolved and merged sample in the control channel in Run2 for $\delta{=}0.2$

イロト 不得 トイヨト イヨト 二日

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup
Cont	rol Chann	ol Sid	ohands			

- Locally varying background asymmetries can bias the measurement
- Apply Energy Test on the sidebands to check the contributions from the background
- Sideband Definition: $(\Delta m > 150 \text{ MeV} \mid\mid 139.5 < \Delta m < 142 \text{ MeV})$
- Split into 3 independent sub-samples,
- Each sub-sample has the same yield as the background in the signal region of the signal sample

P-value distribution for Control Channel sidebands using $\delta\!=\!0.2$

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion •	Backup 00000000000
Sum	nary Ne	xt Step	S			

- The energy test is a sensitive method to search for local CPV within multibody phase space
- $D^0 \rightarrow \pi^+\pi^-\pi^0$ a promising channel and builds on LHCb Run 1 analysis
- Possibility of observing CPV with 4x the statistics compared with Run 1 measurement
- Analysis under internal LHCb review, awaiting approval to unblind.

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup ●00000000000
Signa	al Channe	I Sideb	ands			

- Apply Energy Test on the signal-channel sidebands to check for possible contributions from the background in the signal channel
- Combining Resolved and Merged channels with δ =0.2 yields p = 0.09

000	00		0000	000000	000	0	0000000000
Train	ing	the C	lassifier				

Topological and Other Variables

- log_FITCHI2: The log of the χ^2 probability calculated for the DTF fit obtained by imposing the PV constraint on the D^* and D^0 mass constraint.
- log_D_IPCH12_OWNPV: The logarithm of the χ²_{IP} of the primary vertex of the D⁰ given as a function of difference of χ² in the present and absence of the D⁰.
- acos_D_DIRA_OWNPV: arccos of the angle between the D⁰ momentum vector and the displacement vector joining the production and decay vertices.
- \log_pi0_CL logarithm of the π^0 confidence level
- **D**_CosTheta: cosine of the angle between D^0 momentum in D^* rest frame and D^* momentum in the lab frame
- D_FDCHI2_OWNPV: χ^2 of D^0 flight distance measured with respect to its PV
- pi0_CosTheta: cosine of the angle between π⁰ momentum in D⁰ rest frame and D⁰ momentum in lab frame
- Kstr_CosTheta: cosine of the angle between the $\pi^+\pi^-$ resonance momentum in D^0 rest frame and D^0 momentum in lab frame

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup ○○●○○○○○○○
Train	ing the (lassifie	r			

Kinematic Variables

- **Dstr_FIT_Pi0PT:** p_T of π^0
- Dstr_FIT_Pi0P: p of π^0
- **Dstr_FIT_PT:** p_T of D^0
- **Dstr_FIT_PT:** p_T of $D^{*\pm}$
- **H_PT_SUM:** The scalar sum of the transverse momenta of π^- and π^+ .

Variables in *red* have been added since the last WG Presentation

000	00	0000	000000	000	0	0000000000
Train	ing the	Classifier	Decel	und		

Training the Classifier - Resolved

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup 0000●000000
Train	ing the C	lassifier	- Resolv	ved		

• Decent separation with a range of optimal cut values

Cut applied at ${>}0.05$ to increase purity while staying in the highest significance region

-

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨー のへで

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 00000●00000	
Clone Removal							

- Use angle between pairs of tracks of charged particles
- Impose a cut > 0.0005rad

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$

22 / 22

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion O	Backup 000000●0000
_		• •••				

Event Selection - Stripping

Particle	Quantity	Cut
π^+ or π^-	p _T	> 1700 M/c
	χ^2 w.r.t best PV	> 36
π^{\pm} pair	DOCA χ^2	< 15
	$m_{\pi \pi}$	< 1850 M/c
	vertex χ^2/DoF	< 3
	χ^2 w.r.t best PV	> 100
π^0	рт	> 500 M/c
π^0 (resolved only)	$ m_{\gamma\gamma}-1$ 35 MeV $ $	$< 15{ m MeV}$
D^0	vertex χ^2/DoF	< 20
	рт	> 1400 M/c
	$ m_{\pi^-\pi^+\pi^0} - 1864.84 \text{MeV} $	$< 160 { m MeV}$
	$ m_{D^0} - 1864.84 { m MeV} $	$< 150 \mathrm{MeV}$
π_s	p _T	> 300 M/c
	ghost probability	< 0.35
	PIDe	< 5
	min χ^2_{IP}	< 9
D^{*+}	$m_{D^{+-}} - m_{D^0}$	$< 180 { m MeV}$
	vertex χ^2/DoF	< 9
	DOCA χ^2	< 20
	$m_{\pi^-\pi^+\pi^0\pi_s} - m_{\pi^-\pi^+\pi^0}$	$< 185{ m MeV}$

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$

22 / 22

Dalitz Projections

• Dalitz coordinates flipped for \overline{D}^0 sample to match D^0 distribution (in case of CP symmetry)

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ э

Motivation	Energy Test Method	Event Selection	Sensitivity Studies	Data Driven Validation	Conclusion	Backup 00000000●00	
Delite Ducientieurs							

Dalitz Projections

• Same plots, but sWeighting to subtract background (full ΔM range)

Resolved (left) and Merged (right)

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨー のへで

Motivation Energy Test Method Event Selection Sensitivity Studies Data Driven Validation Conclusion Backup 000 000 0000 0000 0000 0000 00000000●0

• Look at p-value as a function of δ by taking the mean p-value from a set of 5 independent toys for each asymmetry and delta value.

Distribution of p-values as a function of δ for a set of toys with 1° phase asymmetry in dominant resonance

John Cobbledick (UoM) CPV in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ イロト 不得下 不足下 不足下 一足

- Plots below are for asymmetries inserted into sub-dominant resonance
- Based on the δ scans, a preliminary optimal value of $\delta=$ 0.2 is chosen

p-values for phase asymmetries (left) and magnitude asymmetries (right)