# Mixing and CP Violation with $D^0 o K_S^0 \pi^+ \pi^-$

Martha Hilton, Mark Williams, Marco Gersabeck, Eva Gersabeck, Florian Reiss, Jake Lane And the Bin-flip team: Surapat Ek-In, Tara Nanut, Maurizio Martinelli, Nathan Jurik, Sascha Stahl

#### martha.hilton@cern.ch



The University of Manchester

*LHCр* 

April 6, 2022

 $D^0$  Mixing



 $D^0$  $\bar{u}$  $\pi\pi, KK, \dots$  $\bar{c}$  $\bar{c}$ 

Mass Eigenstates:

$$\left| oldsymbol{D}_{1,2} 
ight
angle = oldsymbol{
ho} \left| oldsymbol{D}^0 
ight
angle \pm oldsymbol{q} \left| oldsymbol{ar{D}}^0 
ight
angle$$

Mixing parameters:  

$$x \equiv \frac{(m_1 - m_2)}{\Gamma} \qquad y \equiv \frac{(\Gamma_1 - \Gamma_2)}{2\Gamma}$$

- CP violation discovered in charm in 2019 at LHCb
- CPV in charm is predicted to be small in the Standard Model ( $\sim 10^{-4}-10^{-3})$
- Theoretical prediction has large uncertainties due to strong interactions
- CPV searches in charm complementary to those in kaons and *B* mesons





$$\Gamma(D^0 o ar{D^0} o f, t) 
eq \Gamma(ar{D^0} o D^0 o f, t) ext{ or } \phi = arg\left(rac{qar{A}_f}{par{A}_f}
ight) 
eq 0$$

### World Averages



# Mixing in $D^0 o K^0_S \pi^+ \pi^-$

• 'Right-sign' (CF) and 'wrong-sign' (DCS or mixed) decay into same final state



- Offers **direct** access to mixing and CPV parameters x, y, |q/p|,  $\phi$
- Requires time and phase-space dependent analysis

# Bin-flip Model-independent analysis

- Data is binned in Dalitz coordinates where the binning scheme is chosen to have approximately constant strong-phase differences
- Measure the yield ratio  $R_{bj}^{\pm}$  between -b and b in bins of decay time



$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4}r_b \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4} \langle t^2 \rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \langle t^2 \rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}$$

$$x_{CP} \equiv -\operatorname{Im}(z_{CP}) \qquad y_{CP} \equiv -\operatorname{Re}(z_{CP})$$

$$\Delta x \equiv -\operatorname{Im}(\Delta z) \qquad \Delta y \equiv -\operatorname{Re}(\Delta z)$$
and in the limit of CP symmetry  $x_{CP} = x$ ,  $y_{CP} = y$  and  $\Delta x = \Delta y = 0$ 

# **Bin-flip Results**



R 0.005

 $R_{\delta}^{-}$ 

R\_6^+ -0.01

 $R_A^-$ 

++

 $\mathbb{R}_2^-$ 

R<sup>+</sup> 0.01

0.05

 $t/\tau$ 

#### Results

| Parameter  | Value                     | Stat. correlations |            | Syst. correlations |          |            |            |
|------------|---------------------------|--------------------|------------|--------------------|----------|------------|------------|
|            | $[10^{-3}]$               | $y_{CP}$           | $\Delta x$ | $\Delta y$         | $y_{CP}$ | $\Delta x$ | $\Delta y$ |
| $x_{CP}$   | $3.97 \pm 0.46 \pm 0.29$  | 0.11               | -0.02      | -0.01              | 0.13     | 0.01       | 0.01       |
| $y_{CP}$   | $4.59 \pm 1.20 \pm 0.85$  |                    | -0.01      | -0.05              |          | -0.02      | 0.01       |
| $\Delta x$ | $-0.27 \pm 0.18 \pm 0.01$ |                    |            | 0.08               |          |            | 0.31       |
| $\Delta y$ | $0.20 \pm 0.36 \pm 0.13$  |                    |            |                    |          |            |            |

| Parameter                                                                                | Value                                                         | $95.5\%~{\rm CL}$ interval   |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------|
| $x [10^{-3}]$                                                                            | $3.98 \substack{+ 0.56 \\ - 0.54 \\ 4 c + 1.5 }$              | [2.9, 5.0]                   |
| $\left  \begin{array}{c} y \left[ 10 & 0  ight] \\ \left  q/p  ight  \end{array}  ight $ | $\begin{array}{c} 4.0 \\ -1.4 \\ 0.996 \pm 0.052 \end{array}$ | [2.0, 7.5]<br>[0.890, 1.110] |
| $\phi$                                                                                   | $-0.056 {}^{+ 0.047}_{- 0.051}$                               | [-0.172, 0.040]              |

First observation of a non-zero mass difference (x > 0) in neutral charm mesons.

## Amplitude formalism

The square of the time-dependent amplitude of the process  $D^0 \to K_S^0 \pi^+ \pi^-$  is given by:

$$|\mathcal{A}_{f}(t)|^{2} = \frac{1}{2}e^{-\Gamma t} \left[ \left( |A|^{2} - |\frac{q}{p}B|^{2} \right) \cos(x\Gamma t) - 2 \operatorname{Im} \left( AB^{*} \left[ \frac{q}{p} \right]^{*} \right) \sin(x\Gamma t) + \left( |A|^{2} + |\frac{q}{p}B|^{2} \right) \cosh(y\Gamma t) - 2 \operatorname{Re} \left( AB^{*} \left[ \frac{q}{p} \right]^{*} \right) \sinh(y\Gamma t) \right]$$

$$(1)$$

as well as a similar equation for  $\left| ar{\mathcal{A}}_f(t) 
ight|^2$   $(ar{D}^0 o \mathcal{K}^0_S \pi^+ \pi^-).$ 

 $A = A_f$  and  $B = \overline{A}_f$  are the amplitudes of  $D^0(\overline{D}^0) \to f$  and depend on the phase-space defined by the Dalitz variables  $m^2(K_s^0\pi^+)$  and  $m^2(K_s^0\pi^-)$ .

### **CP** Violation

Include CP-violation in the fit by allowing x and y to be different for  $D^0$  and  $\overline{D}^0$ : x = x<sub>CP</sub> ±  $\Delta x$  and y = y<sub>CP</sub> ±  $\Delta y$  (Bin-flip paper)

$$\begin{aligned} x_{CP} &= \frac{1}{2} \left[ x \cos \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) + y \sin \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ \Delta x &= \frac{1}{2} \left[ x \cos \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) + y \sin \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \\ y_{CP} &= \frac{1}{2} \left[ y \cos \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right] \\ \Delta y &= \frac{1}{2} \left[ y \cos \phi \left( \left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) - x \sin \phi \left( \left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \right] \end{aligned}$$

(2)

(3)

(4)

(5)

The overall PDF is given by:

$$\mathcal{P}(t, m_{+}^{2}, m_{-}^{2}, p_{sig}, tag, \vec{\alpha}) = p_{sig} \left[ (1 - \omega_{muontag}) \mathcal{P}_{sig}(t, m_{+}^{2}, m_{-}^{2}, tag, \vec{\alpha}) + \omega_{muontag} \mathcal{P}_{mt}(t, m_{+}^{2}, m_{-}^{2}, tag, \vec{\alpha}) \right] + (1 - p_{sig}) \mathcal{P}_{bkg}(t, m_{+}^{2}, m_{-}^{2})$$
(6)

 $p_{sig}$  is the per-candidate signal probability, tag is the flavour tag,  $\vec{\alpha}$  is a vector of the fit parameters,  $\omega_{muontag}$  is the mistag fraction. The decay-time is given by t and the Dalitz variables are  $m_{+}^2$  and  $m_{-}^2$ . The signal PDF is given by:

$$\mathcal{P}_{sig}(t, m_+^2, m_-^2, tag, \vec{\alpha}) = \left[ \left( \mid \mathcal{A}_f(t', m_+^2, m_-^2) \mid^2 \epsilon(t') \right) \otimes R(t, t', \mu_t, \sigma_t) \right] \epsilon(m_+^2, m_-^2)$$
(7)

where  $\mathcal{A}_f(t', m_+^2, m_-^2)$  is the time-dependent amplitude model,  $\epsilon(t')$  and  $\epsilon(m_+^2, m_-^2)$  are the decay-time and phase-space efficiencies and  $R(t, t', \mu_t, \sigma_t)$  is the decay-time resolution.

# Data Selection



- Turbo trigger, offline pre-selection and data-trained MVA.
- 1.36M (2.80M) single-tagged LL (DD) signal candidates, and 0.22M (0.48M) double-tagged LL (DD) signal candidates, summing to  $\sim$  4.9M signal candidates in total.

martha.hilton@cern.ch

IOP HEPP & APP Conference 2022

### Amplitude formalism

• The amplitude for  $D \rightarrow abc$  through an intermediate resonance  $r \rightarrow ab$  is given by:

$$A_{r}(m_{+}^{2}, m_{-}^{2}) = F_{D}^{(L)}(q, q_{0}) \times F_{r}^{(L)}(p, p_{0}) \times Z_{L}(\Omega) \times \mathcal{T}_{r}(m)$$
(8)

- where the form factors  $F_D^{(L)}$  and  $F_r^{(L)}$  describe the decay  $D \to rc$  and  $r \to ab$ ,
- L is the orbital angular momentum between a and c,
- p and q are the momenta of c and a in the resonance rest frame,
- $Z_L(\Omega)$  describes the angular distribution of the final state particles,
- $T_r$  is the dynamical function describing the resonance r

$$\mathcal{T}(D^0 \to K_S^0 \pi^+ \pi^-) = c_K \mathcal{T}_{\pi\pi} + c_L \mathcal{T}_{K\pi} + \sum_r c_r \mathcal{T}_r \tag{9}$$

•  $\pi\pi$  S-wave described by K-matrix  $(\mathcal{T}_{\pi\pi})$ ,  $K\pi$  S-wave by LASS  $(\mathcal{T}_{K\pi})$ 

### Time-integrated Fit



- Toy psuedoexperiments are used to validate the fitter, assess potential biases and estimate statistical precision.
- Amplitude model taken from initial time-integrated fit
- Realistic background and detector effects are included
- Decay-time is generated using the PDG value of  $D^0$  lifetime
- Toys are generated with world average values of x and y  $\pm 1\sigma$

## **Toy Studies**





Mean and width of pulls of fit parameters (above). Fit projections for one toy (left).

# Time-dependent Fit (Single-tagged $K_S^0$ (LL) 2016)



- · Model-dependent systematic uncertainties are related to the choice of amplitude model
- Largest experimental systematic uncertainty is due to the background PDF
- Systematics are evaluated by resampling and rerunning fit to data or with toys
- Numbers are preliminary, some need to be updated with the simultaneous fit
- So far they are under control and comparable but below the statistical uncertainty

# World Averages



This figure shows world average not including the bin-flip result (grey), current world averages on the mixing and CP-violation parameters (purple) including the bin-flip result, and this work (yellow)\*.

\* This work refers to the model-dependent amplitude analysis which is currently WIP and blind, here central values assumed are those of the bin-flip result.

martha.hilton@cern.ch

IOP HEPP & APP Conference 2022

# Summary

- Time-dependent amplitude analysis of  $D^0 \to K^0_S \pi^+ \pi^-$
- Mixing parameters x and y can be extracted from a time and phase-space dependent fit of the amplitude model to data
- Fit inputs include:
  - Signal model from Belle and BaBar
  - Decay-time acceptance and resolution from simulation
  - Phase-space acceptance from simulation
  - Background from data driven approach
  - Mistag from  $D o K\pi$  sample
- Blinded time-dependent fit to data
- Toy studies
- Systematic uncertainties and cross-checks

# Back Up

## Systematic uncertainties

| $x_{CP}$ | $y_{CP}$                                                                                                                                             | $\Delta x$                                                                                                                                                                                                                                                 | $\Delta y$                                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0.199    | 0.757                                                                                                                                                | 0.009                                                                                                                                                                                                                                                      | 0.044                                                                                                                                         |
| 0.208    | 0.154                                                                                                                                                | 0.001                                                                                                                                                                                                                                                      | 0.002                                                                                                                                         |
| 0.000    | 0.001                                                                                                                                                | 0.004                                                                                                                                                                                                                                                      | 0.102                                                                                                                                         |
| 0.045    | 0.361                                                                                                                                                | 0.003                                                                                                                                                                                                                                                      | 0.009                                                                                                                                         |
| 0.291    | 0.852                                                                                                                                                | 0.010                                                                                                                                                                                                                                                      | 0.110                                                                                                                                         |
|          |                                                                                                                                                      |                                                                                                                                                                                                                                                            |                                                                                                                                               |
| 0.23     | 0.66                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                       | 0.04                                                                                                                                          |
| 0.00     | 0.00                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                       | 0.08                                                                                                                                          |
| 0.40     | 1.00                                                                                                                                                 | 0.18                                                                                                                                                                                                                                                       | 0.35                                                                                                                                          |
| 0.46     | 1.20                                                                                                                                                 | 0.18                                                                                                                                                                                                                                                       | 0.36                                                                                                                                          |
|          | $\begin{array}{c} x_{CP} \\ 0.199 \\ 0.208 \\ 0.000 \\ 0.045 \\ 0.291 \\ \end{array}$ $\begin{array}{c} 0.23 \\ 0.00 \\ 0.40 \\ 0.46 \\ \end{array}$ | $\begin{array}{ccc} x_{CP} & y_{CP} \\ 0.199 & 0.757 \\ 0.208 & 0.154 \\ 0.000 & 0.001 \\ 0.045 & 0.361 \\ 0.291 & 0.852 \\ \hline \\ 0.291 & 0.852 \\ \hline \\ 0.23 & 0.66 \\ 0.00 & 0.00 \\ 0.40 & 1.00 \\ \hline \\ 0.46 & 1.20 \\ \hline \end{array}$ | $x_{CP}$ $y_{CP}$ $\Delta x$ 0.1990.7570.0090.2080.1540.0010.0000.0010.0040.0450.3610.0030.2910.8520.0100.230.6660.020.000.000.040.401.000.18 |

Uncertainties are in units of  $10^{-3}$ .

# World Averages



World averages of the mixing and CPV parameters showing the impact of this result. Pre-2021 WA in blue and including this result in orange.

#### Paper: PhysRevLett.127.111801

### Analysis overview

• Uses *D* mesons from semi-leptonic *B* meson decays:

• 
$$\overline{B} \rightarrow D^0 (\rightarrow K^0_S \pi^+ \pi^-) \mu^- X$$
 (single-tagged)

• 
$$\overline{B} \to D^{*-} (\to D^0 (\to K^0_S \pi^+ \pi^-) \mu^-) \pi^+ X$$
 (double-tagged)

- Model developed within GooFit and fits run on GPUs
- Initial amplitude model based on Belle and BaBar model (Paper)
- The inputs to the mixing fit consist of:
  - Signal model
  - Background from data-driven approach
  - Phase-space acceptance derived from Monte Carlo
  - Decay-time acceptance and resolution derived from Monte Carlo
  - Mistag fraction derived from two-body  $D^0 
    ightarrow {\cal K}\pi$  sample

#### Simulation

- Monte Carlo reweighted to match data using multi-dimensional kinematic reweighting
- MC is used for phase-space acceptance, decay-time acceptance and decay-time resolution



# Toy Studies



Summary of the results of running fits over ensembles of toy pseudo-experiments, generated at a range of different mixing parameter values covering the world average values  $\pm 1\sigma$ .



World averages on the mixing and CP-violation parameters without the bin-flip result (grey), the 2021 bin-flip result (purple) and this work (yellow)\*.

\* Same assumptions as previous slide.

- Inputs needed for the mixing fit model from simulation: Phase-space acceptance, decay-time resolution and acceptance.
- Monte Carlo samples: Event types 12875523 and 11876125 cocktail of neutral and charged B mesons (phase-space MC)
- MC reweighted using multidimensional kinematic reweighter GBReweighter from hep\_ml



martha.hilton@cern.ch

IOP HEPP & APP Conference 2022

April 6, 2022

8/13



martha.hilton@cern.ch

IOP HEPP & APP Conference 2022

April 6, 2022

9/13

## Phase-space Acceptance



Phase-space acceptance. Single-tag  $K_S^0$  (LL) 2016. MC (left), model (middle), pulls (right).



Regular Dalitz coordinates.

# Time-integrated fit

| Resonance             | Fit Fraction (%) |
|-----------------------|------------------|
| $\rho$ (770)          | 18.40            |
| $\omega(782)$         | 0.44             |
| $f_2(1270)$           | 0.87             |
| ho(1450)              | 0.15             |
| $K^{*}(892)^{-}$      | 56.05            |
| $K_2^*(1430)^-$       | 2.01             |
| $K^{*}(1410)^{-}$     | 0.19             |
| $K^*(1680)^-$         | <0.1             |
| $K^{*}(892)^{+}$      | 0.26             |
| $K_{2}^{*}(1430)^{+}$ | <0.1             |
| $K^{*}(1410)^{+}$     | 0.26             |
| $\pi^+\pi^-$ S-wave   | 11.91            |
| $K_0^*(1430)^-$       | 8.21             |
| $K_0^*(1430)^+$       | <0.1             |



Fit fractions. Single-tag  $K_S^0$  (LL) 2016.

#### Combinatorial background model



## Toy studies with CP violation



Pulls from the ensemble of pseudoexperiments including CP violation allowing  $\Delta x$  and  $\Delta y$  to float.