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Link for animations



https://docs.google.com/presentation/d/1wJfmLzdeufVKDs-TB_GdfGPKB02Sh_fg90KYbHhK7hc/edit?usp=sharing
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Motivation

At high pileup track reconstruction takes up almost
50% of the HLT time budget

“ highPtTripletStepSequence
® initialStepSequence

® caloLocalReco
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} Tracking modules

Kalman filter introduces
combinatorial explosion

2/8



Graph neural nets Graph desaription

Nodes [0,1,0,0,1]
Edges [0,1,1,1, 0]
Adjacency [[0,1], [0,2], [1,3],
list [1,4], [3,4]]
The power of graph neural nets come from Global: 0
aggregating and embedding neighbourhood
information
Algorithm
Works on non-Euclidian data and result in ® Node embedding  Adiacent edges embedding Updated node
non-sparse matrices . b o ._.Il—.- embedding
Adjacent nodes embedding
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Often a “natural” way of representing _
X Global embedding
geometric data -0
Successful applications Message passing
Update node
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https://docs.google.com/file/d/1dy-AAfcEyktIQGosM3BrpOnCZgrPHEh2/preview
https://arxiv.org/pdf/2002.09405.pdf
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00479-8
https://arxiv.org/abs/2101.11174

Graph neural nets for tracking

Reconstruct tracks by using GNN for binary

edge prediction

Deep Mind’s Interaction network used

Promising performance with TrackML and
CMS Phase 2 Monte Carlo data

Work pioneered by ExatrkX

Thanks to a hackathon soon to be part of

CMSSW
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Built graph with p > 0.5 GeV

ROC curve for edge classification
on CMS MC data
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https://arxiv.org/abs/1612.00222
https://link.springer.com/content/pdf/10.1007/s41781-021-00073-z.pdf
https://indico.cern.ch/event/1041335/

Limitations of graph neural nets for tracking
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Allows only one hit per Filters out
layer per track background hits
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~70% of tracks have several hits ~ 20 % of tracks have missing hits ~ 10 % of simulgted tracks
™) have only one hit (*)

in a layer (*)

(*) Based on a small sample from CMS Phase 2 MC
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Reinforcement learning

An agent learns actions by rewards
Requires that:
e Environment is intractable

e Agent receives data in response
to action

e States are Markovian

Successful applications

Playing games

Walking robots
Controlling plasma
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Policy Optimization
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Q-Learning Learn the Model Given the Model
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https://docs.google.com/file/d/1UlBeu_r3rL4dHadOrV9JPPIF9fuzMOPN/preview
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphazero-shedding-new-light-on-chess-shogi-and-go/alphazero_preprint.pdf
https://arxiv.org/abs/1812.11103
https://meetings.aps.org/Meeting/DPP21/Session/GP11.37

Reinforcement learning for graph building

Reward is distance between predicted hit —6>@——0 @
position and real hit position

Does not perform well enough to be a —O0—0— —0—
substitute for graph neural nets

Can contribute to smaller, less restricted 1 § - 3
graphs 14 1 %

121 X
Can in theory also learn how long track 0. *
should be § X . *
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Preliminary plot
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Conclusion

e (Graph neural nets are showing promise for particle tracking
e Reinforcement learning might help solve some of the problems in graph building

Further work:
Albert Einstein: Insanity Is Doing
. . . the Same Thing Over and Over Again
e Refine reinforcement learning technique and Expecting Different Results
e Integrate reinforcement learning with graph building Machine learning:
e Explore seeded graph building
e Accelerate on FPGA
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