

Graph neural nets for CMS particle track reconstruction

IOP HEPP Conference 03-06.04.22

Liv Helen Våge Prof. Alex Tapper liv.helen.vage@cern.ch

Link for animations

Content

Graph neural nets

- Theory
- Particle tracking
- Limitations

Reinforcement learning

- Theory
- Preliminary results for graph building

Motivation

At high pileup track reconstruction takes up almost 50% of the HLT time budget

Kalman filter introduces combinatorial explosion

Graph neural nets

The power of graph neural nets come from aggregating and embedding neighbourhood information

Works on non-Euclidian data and result in non-sparse matrices

Often a "natural" way of representing geometric data

Nodes [0,1,0,0,1] Edges [0, 1, 1, 1, 0]Adjacency [[0,1], [0,2], [1,3], list [1,4], [3,4]] Global: [] Algorithm Adjacent edges embedding Node embedding Updated node embedding Adjacent nodes embedding _ _ _ _ _ Global embedding

Graph description

Successful applications

Physics simulation Drug development Traffic flow

Graph neural nets for tracking

Reconstruct tracks by using GNN for binary edge prediction

Deep Mind's Interaction network used

Promising performance with TrackML and CMS Phase 2 Monte Carlo data

Work pioneered by ExatrkX

Thanks to a hackathon soon to be part of CMSSW

(r,z, **\$**) $(\Delta r, \Delta z, \Delta \phi, \Delta R)$

Built graph with $p_T > 0.5 \,\text{GeV}$

on CMS MC data

Limitations of graph neural nets for tracking

(*) Based on a small sample from CMS Phase 2 MC

Reinforcement learning

An agent learns actions by rewards

Requires that:

- Environment is intractable
- Agent receives data in response to action
- States are Markovian

Successful applications

<u>Playing games</u> <u>Walking robots</u> <u>Controlling plasma</u>

 $\mu_{\theta}(s_t)$

$$\pi_{\theta}(s_t, \omega)$$

$$V^{\pi}(s) = E_{\tau \sim \pi}[R(\tau)|s_0 = s]$$

Reinforcement learning for graph building

Reward is distance between predicted hit position and real hit position

Does not perform well enough to be a substitute for graph neural nets

Can contribute to smaller, less restricted graphs

Can in theory also learn how long track should be

Can be parallelised easily

Conclusion

- Graph neural nets are showing promise for particle tracking
- Reinforcement learning might help solve some of the problems in graph building

Further work:

- Refine reinforcement learning technique
- Integrate reinforcement learning with graph building
- Explore seeded graph building
- Accelerate on FPGA

Albert Einstein: Insanity Is Doing the Same Thing Over and Over Again and Expecting Different Results

Machine learning:

