Imperial College London

Quantum computing approaches for simulating parton showers in high energy collisions

Simon Williams

Institute of Physics 2022 HEPP and APP Conference - 05/04/22

IBMQ

Contents

- The Power of the Qubit!
- The Quantum Walk Framework
- Why are we interested in High Energy Physics?
- The Parton Shower
- Quantum Walk approach to the parton shower [I]
- Looking to the Future
[I] - A quantum walk approach to simulating parton showers, arXiv: 2109.13975 In collaboration with Sarah Malik (UCL), Michael Spannowsky (IPPP, Durham) and Khadeejah Bepari (IPPP, Durham)

The Power of the Qubit!

The Power of the Qubit!

- Qubit: quantum analogue of classical bit, not restricted only to being in either the $|0\rangle$ or $|1\rangle$ state

The Power of the Qubit!

- Qubit: quantum analogue of classical bit, not restricted only to being in either the $|0\rangle$ or $|1\rangle$ state

|1)

The Power of the Qubit!

- Qubit: quantum analogue of classical bit, not restricted only to being in either the $|0\rangle$ or $|1\rangle$ state

The Power of the Qubit!

- Qubit: quantum analogue of classical bit, not restricted only to being in either the $|0\rangle$ or $|1\rangle$ state
$U_{3}(\theta, \phi, \lambda)=\left(\begin{array}{cc}\cos \left(\frac{\theta}{2}\right) & -e^{i \lambda} \sin \left(\frac{\theta}{2}\right) \\ e^{i \phi} \sin \left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)} \cos \left(\frac{\theta}{2}\right)\end{array}\right)$

The Power of the Qubit!

- Qubit: quantum analogue of classical bit, not restricted only to being in either the $|0\rangle$ or $|1\rangle$ state
$U_{3}(\theta, \phi, \lambda)=\left(\begin{array}{cc}\cos \left(\frac{\theta}{2}\right) & -e^{i \lambda} \sin \left(\frac{\theta}{2}\right) \\ e^{i \phi} \sin \left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)} \cos \left(\frac{\theta}{2}\right)\end{array}\right)$
- Extending this to a system of N qubits forms a 2^{N}-dimensional Hilbert Space

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle=\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}}
$$

The Power of the Qubit! - The Quantum Walk Framework

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

$$
U=S \cdot(C \otimes I)
$$

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

$$
U=S \cdot(C \otimes I)
$$

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

$$
U=S \cdot(C \otimes I)
$$

The Power of the Qubit! - The Quantum Walk Framework

- Quantum Walk is the quantum analogue of the classical random walk

$$
\left.\begin{array}{l}
\mathscr{H}_{P}=\{|i\rangle: i \in \mathbb{Z}\} \\
\mathscr{H}_{C}=\{|0\rangle,|1\rangle\}
\end{array}\right\} \mathscr{H}=\mathscr{H}_{C} \otimes \mathscr{H}_{P}
$$

$$
U=S \cdot(C \otimes I)
$$

The Power of the Qubit! - Why are we interested in HEP?

The Power of the Qubit! - Why are we interested in HEP?

Phys. Rev. D 103, 034027

The Power of the Qubit! - Why are we interested in HEP?

Phys. Rev. D 103,076020

Phys. Rev.D 103, 034027

The Power of the Qubit! - Why are we interested in HEP?

Hadronisation

Phys. Rev. D 103,076020

Phys. Rev.D 103, 034027

The Power of the Qubit! - Why are we interested in HEP?

The Power of the Qubit! - Why are we interested in HEP?

Hard Process

Phys. Rev. D 103, 076020

Phys. Rev. Lett. I 26, 062001

Parton Shower

The Parton Shower - Theoretical Outline

The Parton Shower - Theoretical Outline

- We present a discrete, collinear toy QCD model comprising one gluon and one quark flavour

The Parton Shower - Theoretical Outline

- We present a discrete, collinear toy QCD model comprising one gluon and one quark flavour
- To meet current QC qubit restrictions, only collinear splittings have been considered, meaning we do not keep track of individual kinematics

Collinear Condition:

$$
\begin{gathered}
p_{i}=z P, \\
p_{j}=(1-z) P
\end{gathered}
$$

The Parton Shower - Theoretical Outline

- We present a discrete, collinear toy QCD model comprising one gluon and one quark flavour
- To meet current QC qubit restrictions, only collinear splittings have been considered, meaning we do not keep track of individual kinematics

Collinear Condition:

$$
\begin{gathered}
p_{i}=z P, \\
p_{j}=(1-z) P
\end{gathered}
$$

$P_{q \rightarrow q g}(z)=C_{F} \frac{1+(1-z)^{2}}{z}$,

$$
P_{g \rightarrow g g}(z)=C_{A}\left[2 \frac{1-z}{z}+z(1-z)\right],
$$

$$
P_{g \rightarrow q \bar{q}}(z)=n_{f} T_{R}\left(z^{2}+(1-z)^{2}\right) .
$$

The Parton Shower - Theoretical Outline

$$
P_{g \rightarrow g g}(z)=C_{A}\left[2 \frac{1-z}{z}+z(1-z)\right],
$$

$$
P_{g \rightarrow q \bar{q}}(z)=n_{f} T_{R}\left(z^{2}+(1-z)^{2}\right) .
$$

The Parton Shower - Theoretical Outline

$P_{q \rightarrow q g}(z)=C_{F} \frac{1+(1-z)^{2}}{z}$,

$$
P_{g \rightarrow g g}(z)=C_{A}\left[2 \frac{1-z}{z}+z(1-z)\right],
$$

$$
P_{g \rightarrow q \bar{q}}(z)=n_{f} T_{R}\left(z^{2}+(1-z)^{2}\right) .
$$

- The Sudakov factors have been used to determine whether an emission occurs:

$$
\Delta_{i, k}\left(z_{1}, z_{2}\right)=\exp \left[-\alpha_{s} \int_{z_{1}}^{z_{2}} P_{k}\left(z^{\prime}\right) d z^{\prime}\right], \quad \Delta_{\operatorname{tot}}\left(z_{1}, z_{2}\right)=\Delta_{g}^{n_{g}}\left(z_{1}, z_{2}\right) \Delta_{q}^{n_{q}}\left(z_{1}, z_{2}\right) \Delta_{\bar{q}}^{n_{\bar{q}}}\left(z_{1}, z_{2}\right)
$$

The Parton Shower - Theoretical Outline

$P_{q \rightarrow q g}(z)=C_{F} \frac{1+(1-z)^{2}}{z}$,

$$
P_{g \rightarrow g g}(z)=C_{A}\left[2 \frac{1-z}{z}+z(1-z)\right],
$$

$$
P_{g \rightarrow q \bar{q}}(z)=n_{f} T_{R}\left(z^{2}+(1-z)^{2}\right)
$$

- The Sudakov factors have been used to determine whether an emission occurs:

$$
\Delta_{i, k}\left(z_{1}, z_{2}\right)=\exp \left[-\alpha_{s} \int_{z_{1}}^{z_{2}} P_{k}\left(z^{\prime}\right) d z^{\prime}\right], \quad \Delta_{\operatorname{tot}}\left(z_{1}, z_{2}\right)=\Delta_{g}^{n_{g}}\left(z_{1}, z_{2}\right) \Delta_{q}^{n_{q}}\left(z_{1}, z_{2}\right) \Delta_{\bar{q}}^{n_{\bar{q}}}\left(z_{1}, z_{2}\right)
$$

- Combine Sudakov and splitting functions to get splitting probability for $k \rightarrow i j$ in a single shower step:

$$
\operatorname{Prob}_{k \rightarrow i j}=\left(1-\Delta_{k}\right) \times P_{k \rightarrow i j}(z)
$$

Quantum Walk approach to the parton shower

Quantum Walk approach to the parton shower

- \mathscr{H}_{P} : increase dimension of position space to 2D to allow for the simulation of a gluons and quarks

Quantum Walk approach to the parton shower

- \mathscr{H}_{P} : increase dimension of position space to 2D to allow for the simulation of a gluons and quarks
- \mathscr{H}_{C} : increase dimension of coin space to accommodate for the collinear splitting probabilities

Quantum Walk approach to the parton shower

- \mathscr{H}_{P} : increase dimension of position space to 2D to allow for the simulation of a gluons and quarks
- \mathscr{H}_{C} : increase dimension of coin space to accommodate for the collinear splitting probabilities
- C : coin operation is now splitting probability:

$$
P_{i j}=\left(1-\Delta_{k}\right) \times P_{k \rightarrow i j}
$$

Quantum Walk approach to the parton shower

- \mathscr{H}_{P} : increase dimension of position space to 2D to allow for the simulation of a gluons and quarks
- \mathscr{H}_{C} : increase dimension of coin space to accommodate for the collinear splitting probabilities
- C : coin operation is now splitting probability:

$$
P_{i j}=\left(1-\Delta_{k}\right) \times P_{k \rightarrow i j}
$$

- S : shift operation updates shower content accordingly

Quantum Walk approach to the parton shower

- \mathscr{H}_{P} : increase dimension of position space to 2D to allow for the simulation of a gluons and quarks
- \mathscr{H}_{C} : increase dimension of coin space to accommodate for the collinear splitting probabilities
- C : coin operation is now splitting probability:

$$
P_{i j}=\left(1-\Delta_{k}\right) \times P_{k \rightarrow i j}
$$

- S : shift operation updates shower content accordingly

Quantum Walk approach to the parton shower

	Previous algorithm	QW
Qubits	31	16
Steps	2	31
Scaling, n_{q}	$\frac{3 N(N+1)^{*}}{2}$	$2 \log _{2}(N+1)+6$

[^0]
arXiv: 2109.13975

Quantum Walk approach to the parton shower

Previous algorithm

Qubits

Steps

Scaling, n_{q}

$$
\frac{3 N(N+1)^{*}}{2}
$$

$2 \log _{2}(N+1)+6$
*Scaling of a single register, not full circuit!
Previous - Phys. Rev. D 103, 076020 (202I)

Quantum Walk approach to the parton shower

Previous algorithm

Qubits

Steps
31
16

31

Scaling, $n_{q} \quad \frac{3 N(N+1)^{*}}{2} \quad 2 \log _{2}(N+1)+6$
*Scaling of a single register, not full circuit!
Previous - Phys. Rev. D 103, 076020 (2021)

Quantum Walk approach to the parton shower

Previous algorithm

Qubits

Steps
31
16

2
31
Scaling, $n_{q} \quad \frac{3 N(N+1)^{*}}{2} \quad 2 \log _{2}(N+1)+6$
*Scaling of a single register, not full circuit!
Previous - Phys. Rev. D 103, 076020 (2021)

Summary and Looking to the Future

- Present a dedicated quantum algorithm for the simulation of parton showers in high energy collisions:
- All shower histories calculated in full superposition constructing a final wavefunction containing all possible histories. Measurement projects out a physical quantity.
- Reframing in the Quantum Walk framework vastly improves the efficiency of the quantum parton shower algorithm and offers a quadratic speed up compared to MCMC sampling
- Looking to the future: the introduction of kinematics to the algorithm will be a large step forward in the realism of the algorithm, with the potential of comparison to real data

IBMQ

Imperial College London

Back up slides

Institute of Physics 2022 HEPP and APP Conference - 05/04/22

Quantum Walk approach to the parton shower - A Simple Shower

- Consider a simple shower with a single particle type ϕ

$$
\phi \rightarrow \phi \phi: P_{\phi \rightarrow \phi \phi}
$$

- \mathscr{H}_{c} : Here we alter the coin operation to reflect the splitting probability $P_{\phi \rightarrow \phi \phi}$
- \mathscr{H}_{p} : The walker position space now reflects the number of ϕ particles present in the shower

Quantum Walk approach to the parton shower - Results

Markov Chain parton shower implementation

Previous algorithm:

Builds on Phys. Rev. Lett. 126, 062001 (2021)

Measurement

- Measurement of an arbitrary qubit system, $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, is represented by the projection onto the $|0\rangle$ and $|1\rangle$ state, defining the projection operators $P_{0}=|0\rangle\langle 0|$ and $P_{1}=|1\rangle\langle 1|$.
- The probability of measuring the $|0\rangle$ state:

$$
\operatorname{Prob}(|0\rangle)=\operatorname{Tr}\left(P_{0}|\psi\rangle\langle\psi|\right)=\langle\psi| P_{0}|\psi\rangle=|\alpha|^{2}
$$

- Qubits are measured in this Projection-Valued Measurement regime and so the final state of the qubit is altered by the measurement. If the qubit is measured in the $|0\rangle$ state, then the final qubit state is:

$$
|\psi\rangle \leftarrow \frac{P_{0}|\psi\rangle}{\sqrt{\langle\psi| P_{0}|\psi\rangle}}=|0\rangle
$$

Looking to the Future of Quantum Computers

- We are on the brink of a 'quantum revolution' - IBM on track to exceed 1000 qubits by 2023
- Quantum Walks have long been conjectured to give a quadratic speed up in the mixing time of Markov Chains
- Quadratic speed up has been proven for several quantum
 MCMC algorithms

[^0]: *Scaling of a single register, not full circuit!
 Previous - Phys. Rev. D I 03,076020 (202I)

