

Search for $\Xi_b^-(\Omega_b^-) o \Lambda_c^+ h^- h^{'-}$ decays at the LHCb

Bhagyashree Pagare

University of Warwick

on behalf of LHCb collaboration

IOP HEPP - 4th April 2022

Bhagyashree Pagare

1

Search for $\Xi_{h}^{-}(\Omega_{h}^{-}) \to \Lambda_{c}^{+}h^{-}h^{\prime}{}^{-}$ decays at the LHCb

- CP asymmetry observed in some weak processes involving mesons showing interference effects.
- Drives to look for other sources of CP violation.
- No such effects have been observed in b baryons yet, that might explain the baryogenesis process.
- Decays of heavier b-baryons are not well studied yet.
- Motivates us to investigate the sector.
- Large statistics can provide exciting possibilities for resonances.
- Aim to understand and search for their decay possibilities.

- The LHCb experiment at CERN provides platform to understand the unprecedented quantities of b baryons produced by the LHC collisions.
- A versatile online data selection capability.
- Excellent mass, vertex and proper time resolution.
- Precise particle identification.

- It is a single-arm forward spectrometer.
- Operates at the COM energy of 7, 8 and 13TeV of the LHC where the proton-proton collisions happen.

▶ 4 Ξ

- *гнср*
- VELO : Tracking device; beams collide; accurate measurement of the decay positions.
- RICH : provides particle identification; measure emissions of cherenkov radiation;
- Magnet : Track's curvature helps to measure the momentum of the charged particles.

Figure: Int. J. Mod. Phys. A 30, 1530022 (2015)

- Tracking system (TT, T1,T2,T3) : picks up ionisation of charged particles; provide efficient reconstruction of tracks;
- Calorimeters : designed to stop particles; measure amount of energy lost; provide main method to identify neutrally charged particles.
- Muon systems : detects muons that are present in the final states of many B decays

 Upgraded detector will start taking data this year, providing further opportunities to explore the physics.

Introduction

- Search for $\Xi_b^-(\Omega_b^-) \to \Lambda_c^+ h^- h'^-$ decays; $h, h' = KK, K\pi, \pi\pi$
- Cabibbo Favoured Decays: $\Xi_b^- \to \Lambda_c^+ K^- \pi^-$, $\Omega_b^- \to \Lambda_c^+ K^- K^-$
- Has an unmeasured branching fraction.
- Important to control systematics in future CP Violation studies with other modes.
- $B^- \to \Lambda_c^+ \bar{p} \pi^-$ and $B^- \to \Lambda_c^+ \bar{p} K^-$ are used as the normalisation modes.

Figure: Decay diagrams for the (a) $\Xi_b^- \to \Lambda_c^+ K^- \pi^-$, (b) $\Xi_b^- \to \Lambda_c^+ K^- K^-$, (c) $\Omega_b^- \to \Lambda_c^+ K^- K^-$

Bhagyashree Pagare

- Branching fraction measurement of the decay modes relative to the control modes
- Relative branching fraction of the two control modes.
- Observe Dalitz plot projections.
- Production kinematics and production asymmetry of Ξ_b^- baryon.

- Decay is reconstructed from the final state tracks for both data and MC simulation of the proton-proton collision.
- Signal-like and background-like events are separated using BDT.
- The BDT receives topological, vertex and kinematic information.
- Optimum working point is chosen for the analysis.

- The invariant mass distribution is modelled from the MC and used to fit the shape to data.
- Study and model various possible backgrounds in the decay.

- The total efficiency of reconstruction, selection etc, is estimated from MC simulation.
- The corrected yields take into account the fitted yields and efficiency as $N_{corr} =$ fit yields / efficiency.
- Branching fraction of the two decays will be ratio of their corrected yields.

Table: Branching fraction with statistical and systematic uncertainties.

	Run I	Run II			
$\frac{\left(\mathcal{B}B^{-}\to\Lambda_{c}^{+}\bar{p}K^{-}\right)}{\left(\mathcal{B}B^{-}\to\Lambda_{c}^{+}\bar{p}\pi^{-}\right)}$	$0.043 \pm 0.006 \pm 0.002$	$0.040 \pm 0.003 \pm 0.001$			
combined	$0.0406 \pm 0.0023 \pm 0.0015$				

Mass fit of the signal mode $\Xi_b^-(\Omega_b^-) \to \Lambda_c^+ \mathcal{K}^- \pi^-$

- Signal modes are blinded in order to ensure that the modelling is unbiased.
- Blind mass window : (5735–5865*MeV*/*c*²) and (5977–6107*MeV*/*c*²)

Results - DP projections

Figure: Background-subtracted and efficiency-corrected DP projections of (top) $B^- \rightarrow \Lambda_c^+ \bar{p} \pi^-$ and (bottom) $B^- \rightarrow \Lambda_c^+ \bar{p} K^-$ decays.

4 D b 4 A b 4 B b

< E >

Э

Results - Invariant Mass Projections

• Production asymmetry of Ξ_b^- baryon.

$$egin{aligned} \mathsf{A}_{\mathsf{prod}} = rac{\sigma(\mathsf{pp} o XbY) - \sigma(\mathsf{pp} o ar{XbY})}{\sigma(\mathsf{pp} o XbY) + \sigma(\mathsf{pp} o ar{XbY})} \end{aligned}$$

• According to the Standard Model $A_{CP} = 0$

$$A_{meas} = A_{prod} + A_{CP}$$
$$A_{meas} = \frac{N(X_b^- \to \Lambda_c^+ h^- h^{\cdot-}) - N(\bar{X_b} \to \bar{\Lambda_c} h^+ h^{\cdot+})}{N(X_b^- \to \Lambda_c^+ h^- h^{\cdot-}) + N(\bar{X_b} \to \bar{\Lambda_c} h^+ h^{\cdot+})}$$

where, X_b is a b hadron and h,h' are p, K, π and N is background subtracted and efficiency corrected yields

• Hence $A_{prod} \approx A_{meas}$

- Variation of production asymmetry for the control mode.
- Studied in the bins of transverse momentum and acceptance range of the detector (pseudorapidity).

A_prod = -0.00507 ± 0.0015 (Average over polarity - black)
A_prod = -0.0052 ± 0.0019 (LHCb Average)

- Branching fraction measurements have been performed for the control modes along with systematics.
- Dalitz plot projection were studied for the control modes.
- Production asymmetry was evaluated for the control modes.
- Blind fits are performed for the signal modes.
- Efficiencies are computed for the signal modes

- Unblind the fits for the signal and calculate the branching fraction ratios.
- Measure the production kinematics and asymmetries for the signal modes.
- Look for any resonances in the DP of the signal channel.

Backup slides

Bhagyashree Pagare

Search for $\equiv_{h}^{-}(\Omega_{h}^{-}) \rightarrow \Lambda_{c}^{+}h^{-}h^{\prime -}$ decays at the LHCb

E

■ The total efficiency estimated from MC :

 $\epsilon_{\textit{tot}} = \epsilon_{\textit{Trig},\textit{Strip},\textit{Geom},\textit{Reco}} \times \epsilon_{\textit{sel}} \times \epsilon_{\textit{PID}}$

- The lifetime corrections have been applied for the Ω_b decays, since the simulated value and world average value differ from each other.
- However, we use DP efficiency maps to apply an event by event efficiency correction.

	Polarity	2011(%)	2012(%)	2015(%)	2016(%)	2017(%)	2018(%)
$B^- \rightarrow \Lambda_c^+ \overline{p} \pi^-$	Up	0.039	0.033	0.059	0.067	0.069	0.061
$B^- \rightarrow \Lambda_c^+ \overline{p} \pi^-$	Down	0.039	0.034	0.059	0.066	0.071	0.062
$B^- \rightarrow \Lambda_c^+ \overline{p} K^-$	Up	0.033	0.027	0.050	0.057	0.065	0.054
$B^- \rightarrow \Lambda_c^+ \overline{p} K^-$	Down	0.034	0.028	0.052	0.056	0.064	0.056
$\Xi_b^- \rightarrow \Lambda_c^+ K^- K^-$	Up	0.035	0.029	0.046	0.052	0.061	0.052
$\Xi_b^- \rightarrow \Lambda_c^+ K^- K^-$	Down	0.037	0.029	0.049	0.052	0.061	0.053
$\Xi_b^- \rightarrow \Lambda_c^+ K^- \pi^-$	Up	0.045	0.037	0.057	0.061	0.067	0.056
$\Xi_b^- \rightarrow \Lambda_c^+ K^- \pi^-$	Down	0.045	0.038	0.059	0.062	0.068	0.057
$\Xi_b^- \rightarrow \Lambda_c^+ \pi^- \pi^-$	Up	0.057	0.049	0.072	0.079	0.080	0.069
$\Xi_b^- \rightarrow \Lambda_c^+ \pi^- \pi^-$	Down	0.056	0.053	0.073	0.075	0.079	0.069
$\Omega_b^- \rightarrow \Lambda_c^+ K^- K^-$	Up	0.035	0.027	0.043	0.047	0.054	0.046
$\Omega_b^- \rightarrow \Lambda_c^+ K^- K^-$	Down	0.036	0.028	0.045	0.045	0.055	0.048
$\Omega_b^- \rightarrow \Lambda_c^+ K^- \pi^-$	Up	0.043	0.032	0.051	0.055	0.060	0.059
$\Omega_b^- \rightarrow \Lambda_c^+ K^- \pi^-$	Down	0.042	0.035	0.052	0.057	0.061	0.059
$\Omega_b^- \rightarrow \Lambda_c^+ \pi^- \pi^-$	Up	0.054	0.044	0.064	0.069	0.070	0.059
$\Omega_b^- \to \Lambda_c^+ \pi^- \pi^-$	Down	0.052	0.045	0.068	0.071	0.070	0.060

	Run I	Run II
Fit model	0.153	0.532
Fixed parameters	0.797	0.485
Fit bias	1.081	0.478
Multiple candidates	0.047	0.412
Finite MC statistics	1.980	0.774
Data-MC mismatch	2.341	0.274
Square Dalitz plot binning	0.596	0.229
PID resampling	0.962	0.308
Tracking correction	0.838	0.018
LOHadron	2.521	2.521
Subtotal (uncorrelated)	2.558	1.031
Subtotal (correlated)	3.625	2.652
Total (relative)	4.424	2.845
Total systematic (absolute)	0.0019	0.0011
Total statistical (absolute)	0.0057	0.0025

《日》 《圖》 《臣》 《臣》

E

- The blind fits are validated by performing pseudoexperiments to ensure the stability of the fits and unbiasing of the fit parameters.
- Generate toy samples corresponding to the model and fit them while fixing the signal yields to values of 500(1000), 25(50), 50(100), for $\Xi_b^- \to \Lambda_c^+ K^- \pi^- \text{Run I}(\text{Run II}), \ \Xi_b^- \to \Lambda_c^+ K^- K^- \text{Run I}(\text{Run II})$ and $\Omega_b^- \to \Lambda_c^+ K^- K^- \text{Run I}(\text{Run II}).$

