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Model Dependent measurement of ∆δD

I D0(D̄0)→ K 0
Sπ

+π− has 2 degrees of freedom - typically
describe phasespace with the ‘Dalitz variables’
m2
± = (pK0

S
+ pπ±)2.

I We use the ‘isobar’ model to describe the complex valued
amplitude of AD0 :

AD0(Φ) =
∑
r

arAr (Φ) +
∑

non−res
Anon−res(Φ)

with couplings ar to every resonance.

I If we assume no CP violation then
AD̄0(m2

+,m
2
−) = A∗D0(m2

−,m
2
+).



Strong Phase ∆δD(Φ) in K 0
Sπ

+π−



Belle-BaBar 2018

Belle and BaBar (https://arxiv.org/abs/1804.06153v1), used 1.2M
signal D0 → K 0

Sπ
+π− events from BB̄ pairs.

Most accurate D0 → K 0
Sπ

+π− model to date.

https://arxiv.org/abs/1804.06153v1


CKM Measurements with D0(D̄0)→ K 0
Sπ

+π−
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x± + iy± = rB± exp(i(δB ± γ))

D0D̄0 interfering terms lead to dependence on the relative phase
between D0 and D̄0.



Model Dependent Measurement of CKM parameters

I If the model for B± → D(→ K 0
Sπ

+π−)h± is completely true,
then σsyst = 0 for the model.

I Problem is that the model for the decay might be wrong -
particularly with the ∆δD(Φ) - even if the magnitudes for D0

and D̄0 are correct.

I From LHCb (2014) (arxiv.org/abs/1407.6211) measurement
with 1fb−1, get γ = (84+49

−42)◦ including statistical and

systematic uncertainties (would ≈ 16◦ with the 9fb−1 data).

I σsyst in this measurement is between 2% and 20% (depending
on the parameter) of the σstat, this systematic is dominated
by the choice of model for D0 → K 0

Sπ
+π−.

https://arxiv.org/abs/1407.6211


Binned Measurement of ∆δD(Φ)

I Systematics are clearly a big problem for these measurements.

I Modelling ∆δD(Φ) is likely the problem.

I Can ‘measure’ model ∆δD(Φ) from BESIII ψ(3770)→ D0D̄0

data, independent of the model
https://arxiv.org/abs/2003.00091 by binning the strong phase
into ±i = 1, 2, ..,N bins.

I ci + isi =
∫
i |AD0 (Φ)||ADzbar (Φ)| exp(i∆δD(Φ))dΦ√∫

i |AD0 (Φ)|2dΦ
∫
i |AD̄0 (Φ)|2dΦ

https://arxiv.org/abs/2003.00091


Binned Measurement of ∆δD(Φ)

From
https://arxiv.org/abs/2003.00091

https://arxiv.org/abs/2003.00091


Binned Measurement of CKM parameters
I Then use results ci , si from ψ(3770) data as inputs and

perform ‘model-independent’ measurements of CKM
parameters by splitting the Dalitz plane in to i = ±1,±2,±N
bins of ∆δD using some binning scheme (built from a model).

I No more model systematics, but lose statistical precision due
to binning and introduce systematics from the BESIII input.

I 〈NB−
i 〉 ∝ Fi + (x2

− + y2
−)F̄i + 2

√
Fi F̄i (cix− + siy−)

I 〈NB+

i 〉 ∝ F̄i + (x2
+ + y2

+)Fi + 2
√
Fi F̄i (cix+ − siy+)

I The binned analysis at LHCb
(https://arxiv.org/abs/1806.01202 with 9fb−1 obtained
γ = (68.7+5.2

−5.1)◦.

I Initially thought that binning ∆δD(Φ) equally would yield best
precision (smallest changes in ∆δD(Φ) in each bin.

I Further optimisations for the binning scheme have been
performed - can get approximately 85% of the precision of the
MD method https://arxiv.org/abs/1010.2817.

https://arxiv.org/abs/1806.01202
https://arxiv.org/abs/1010.2817


Quasi Model Independent measurement of ∆δD

I If |A0
D(Φ)| is close to the ‘truth’ (i.e. that we trust the results

for |A0
D(Φ)| from the B-Factories).

I Belle-BaBar have no access to ∆δD(Φ) since only
D0 → K 0

Sπ
+π− is studied.

I We attempt to ‘correct’ the ∆δD(Φ) that the Belle-BaBar
model produces

I Replace ∆δD(Φ) with ∆δD(Φ) + f (Φ|C ), correcting the
strong phase from a given model

I This is different from the ‘Binned’ method - which calculates
quantities that depend on ∆δD(Φ) in a model independent
way

I We do not bin Φ at all - we attempt to do a point by point
correction to the strong phase in the two-dimensional Dalitz
phase-space using correlated D0D̄0 prepared states (i.e.
ψ(3770)→ D0D̄0 with at least one deccaying to K 0

Sπ
+π−.



Quasi Model Independent measurement of ∆δD
I f (Φ|C ) is given as a two-dimensional polynomial in Dalitz

space, Φ = (m2
+,m

2
−):

f (Φ|C ) =
O∑
i=0

O−i∑
j=0

Ci ,jPi (m
2
+)Pj(m

2
−)

I To preserve antisymmetry of ∆δD(Φ), we require
f (Φ) = −f (ΦT ),

I Can achieve this with transformation
Φ = (m2

+,m
2
−)→ Φ′ = (w+(m2

+,m
2
−),w−(m2

+,m
2
−)):

w+(m2
+,m

2
−) = m2

+ + m2
−

w−(m2
+,m

2
−) = m2

− −m2
+

I Then these one-dimensional polynomials, Pi (w+)P2j+1(w−),
i , j = 0, 1, 2...O build up the two-dimensional polynomial
f (Φ|C ) with Ci ,2j+1 as the free parameters.



Quasi Model Independent measurement of ∆δD

I Begin with Dalitz
Coordinates m2

+,m
2
−.

I Right shows a polynomial
with C0,1 = 1.

I Rotation of (m2
+,m

2
−) to

(w+(m2
+,m

2
−),w−(m2

+,m
2
−))

is one way to build
polynomials that obey
f (m2

+,m
2
−) = −f (m2

−,m
2
+).



Form of correction

So we have the final form of our polynomial,
f (Φ|C ) = f (m2

+,m
2
−|C ):

f (m2
+,m

2
−|C ) =

O(C)∑
i=0

O(C)−i∑
j=0

Ci ,2j+1

× P legendre
i (w+(m2

+,m
2
−))

× P legendre
2j+1 (w ′−(m2

+,m
2
−))

with O(C ) as our ‘order’ , we chose Legendre polynomials for
Pi (x) since they gave smaller correlations of the polynomials we
considered (‘simple’ (Pi (x) = x i ) and ‘Chebyshev’).



Toy Monte Carlo

I We used AmpGenhttps://github.com/GooFit/AmpGen to
generate toy ψ(3770)→ D0D̄0 and B± → DK± samples.

Tag Type NGenerated NBESIII2020

CP Odd (K+K−) 500 443± 22
CP Even (K 0

Sπ
0) 500 643± 26

D0 flavour (K+π−) 5000 4740± 71
D̄0 flavour (K−π+) 5000 4740± 71

Double Tag K 0
Sπ

+π− 1000 899
https://arxiv.org/abs/2002.12791

Tag Type NGenerated NLHCb−2021
B− → DK− 20000 (3798± 41) + (8735± 89)
B+ → DK+ 20000 (3798± 41) + (8735± 89)

https://arxiv.org/abs/2010.08483

https://github.com/goofit/ampgen
https://arxiv.org/abs/2002.12791
https://arxiv.org/abs/2010.08483


Comparison of CKM precision between unbinned, QMI and
binned measurements of CKM parameters



Comparison of CKM precision between unbinned, QMI and
binned measurements of CKM parameters



Impact of a bias in ∆δD on the CKM measurement

I Define a ‘Gaussian’ bias to ∆δD(Φ),
fG (Φ|µ+, µ−, σ+, σ−,A,w

0
−)

I

f (Φ) = A× erf
(
w−(m2

+,m
2
−)

w0
−

)
×

{
G (m2

+, µ+, σ+)G (m2
−, µ−, σ−) m2

+ > m2
−

G (m2
−, µ+, σ+)G (m2

+, µ−, σ−) m2
+ > m2

−



An extreme example of a bias to ∆δD(Φ)



Recovery of ∆δD(Φ) with our method



Deciding on the order of the correcting polynomial in the
QMI method



Summary

I Introduced a new method to measure ∆δD(m2
+,m

2
−).

I Method has much greater precision than the binned method.

I Method recovers from bias to ∆δD(m2
+,m

2
−) and therefore

avoids large shifts in CKM parameters .

I σstatMD < σstatQMI < σstatBinned.

Next...

I Write the method paper (In progress).

I Optimize implementation of method (lots of thanks to Tim
Evans for creating and supporting AmpGen).

I Actually use the method in a measurement with data.



Backup Slides



Optimal Binning scheme

https://arxiv.org/abs/1904.01129 https://arxiv.org/abs/1010.2817

https://arxiv.org/abs/1904.01129
https://arxiv.org/abs/1010.2817


Toy K+K− v.s. K 0
Sπ

+π−



Toy K 0
Sπ

0 v.s. K 0
Sπ

+π−



Toy K+π− v.s. K 0
Sπ

+π−



Toy K−π+ v.s. K 0
Sπ

+π−



Toy K 0
Sπ

+π− v.s. K 0
Sπ

+π−



Toy B− → Dh− D → K 0
Sπ

+π−



Toy B+ → Dh+ D → K 0
Sπ

+π−



Deciding on the order of the correcting polynomial in the
QMI method



Recovery of ∆δD(Φ) with our method



Stretching w+,w−

Can stretch the input parameters
into a square with:

w ′− =
αw−

bw+ + 1− ε

on right: α = 2, b = 1, ε = 0.01
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