A Quasi Model Independent method to measure the relative strong phase in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays

Eva Gersabeck, Jake Lane, Jonas Rademacker

April 4, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview

Introduction

Model Dependent measurement of $\Delta \delta_D$ Quasi Model Independent measurement of $\Delta \delta_D$

Comparison of precision between unbined, QMI and binned measurements of CKM parameters

Impact of a bias in $\Delta \delta_D$ on the CKM measurement An extreme example of a bias to $\Delta \delta_D(\Phi)$ Recovery of $\Delta \delta_D(\Phi)$ with our method

Deciding on the order of the correcting polynomial in the QMI method

Summary

Deciding on the order of the correcting polynomial in the QMI method

Model Dependent measurement of $\Delta \delta_D$

- ► $D^0(\bar{D}^0) \rightarrow K_S^0 \pi^+ \pi^-$ has 2 degrees of freedom typically describe phasespace with the 'Dalitz variables' $m_{\pm}^2 = (p_{K_S^0} + p_{\pi^{\pm}})^2$.
- We use the 'isobar' model to describe the complex valued amplitude of A_{D⁰}:

$$A_{D^0}(\Phi) = \sum_r a_r A_r(\Phi) + \sum_{\mathrm{non-res}} A_{\mathrm{non-res}}(\Phi)$$

with couplings a_r to every resonance.

▶ If we assume no CP violation then $A_{\bar{D}^0}(m^2_+, m^2_-) = A^*_{D^0}(m^2_-, m^2_+).$

Strong Phase $\Delta \delta_D(\Phi)$ in $K_S^0 \pi^+ \pi^-$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで、

Belle-BaBar 2018

Belle and BaBar (https://arxiv.org/abs/1804.06153v1), used 1.2M signal $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ events from $B\bar{B}$ pairs.

Resonance	Amplitude	Phase (deg)	Fit Fraction (%)
$K_{S}^{0}\rho(770)^{0}$	1 (fixed)	0 (fixed)	20.4
$K_{s}^{0}\omega(782)$	0.0388 ± 0.0005	120.7 ± 0.7	0.5
$K_s^0 f_2(1270)$	1.43 ± 0.03	-36.3 ± 1.1	0.8
$K_{s}^{0}\rho(1450)^{0}$	2.85 ± 0.10	102.1 ± 1.9	0.6
$K^{*}(892)^{-}\pi^{+}$	1.720 ± 0.006	136.8 ± 0.2	59.9
$K_2^*(1430)^-\pi^+$	1.27 ± 0.02	-44.1 ± 0.8	1.3
$K^{*}(1680)^{-}\pi^{+}$	3.31 ± 0.20	-118.2 ± 3.1	0.5
$K^{*}(1410)^{-}\pi^{+}$	0.29 ± 0.03	99.4 ± 5.5	0.1
$K^{*}(892)^{+}\pi^{-}$	0.164 ± 0.003	-42.2 ± 0.9	0.6
$K_2^*(1430)^+\pi^-$	0.10 ± 0.01	-89.6 ± 7.6	< 0.1
$K^{*}(1410)^{+}\pi^{-}$	0.21 ± 0.02	150.2 ± 5.3	< 0.1
$\pi^+\pi^-$ S-wave Parameters			10.0
β_1	8.5 ± 0.5	68.5 ± 3.4	
β_2	12.2 ± 0.3	24.0 ± 1.4	
β_3	29.2 ± 1.6	-0.1 ± 2.5	
β_4	10.8 ± 0.5	-51.9 ± 2.4	
f_{11}^{prod}	8.0 ± 0.4	-126.0 ± 2.5	
fprod f12	26.3 ± 1.6	-152.3 ± 3.0	
fprod	33.0 ± 1.8	-93.2 ± 3.1	
fprod	26.2 ± 1.3	-121.4 ± 2.7	
sprod	-0.07 (fixed)		
$K\pi$ S-wave Parameters			
$K_{5}^{*}(1430)^{-}\pi^{+}$	2.36 ± 0.06	99.4 ± 1.7	7.0
$K_0^*(1430)^+\pi^-$	0.11 ± 0.01	162.3 ± 6.6	< 0.1
$M_{K^{+}(1420)\pm}$ (GeV/ c^{2})	1.441 ± 0.002		
$\Gamma_{Ka(1430)} + (GeV)$	0.193 ± 0.004		
F	$\pm 0.96 \pm 0.07$		
R	1 (fixed)		
a	$+0.113 \pm 0.006$		
- T	-33.8 ± 1.8		
ϕ_F (deg)	0.1 ± 0.3		
ϕ_B (deg)	-109.7 ± 2.6		
K [*] (892) [±] Parameters			
$M_{K*(som)+}$ (GeV/ c^2)	0.8937 ± 0.0001		
Traimant (GeV)	0.0472 ± 0.0001		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Most accurate $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ model to date.

CKM Measurements with $D^0(\bar{D}^0) \rightarrow K^0_S \pi^+ \pi^-$

 $D^0 \overline{D}^0$ interfering terms lead to dependence on the relative phase between D^0 and \overline{D}^0 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Model Dependent Measurement of CKM parameters

- ▶ If the model for $B^{\pm} \to D(\to K_S^0 \pi^+ \pi^-) h^{\pm}$ is completely true, then $\sigma^{\text{syst}} = 0$ for the model.
- Problem is that the model for the decay might be wrong particularly with the Δδ_D(Φ) - even if the magnitudes for D⁰ and D

 ⁰ are correct.
- From LHCb (2014) (arxiv.org/abs/1407.6211) measurement with 1fb⁻¹, get γ = (84⁺⁴⁹₋₄₂)° including statistical and systematic uncertainties (would ≈ 16° with the 9fb⁻¹ data).
- ► σ^{syst} in this measurement is between 2% and 20% (depending on the parameter) of the σ^{stat} , this systematic is dominated by the choice of model for $D^0 \rightarrow K_5^0 \pi^+ \pi^-$.

(日)((1))

Binned Measurement of $\Delta \delta_D(\Phi)$

- Systematics are clearly a big problem for these measurements.
- Modelling $\Delta \delta_D(\Phi)$ is likely the problem.
- ► Can 'measure' model $\Delta \delta_D(\Phi)$ from BESIII $\psi(3770) \rightarrow D^0 \overline{D}^0$ data, independent of the model https://arxiv.org/abs/2003.00091 by binning the strong phase into $\pm i = 1, 2, ..., N$ bins.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$$c_i + is_i = \frac{\int_i |A_{D^0}(\Phi)| |A_{Dzbar}(\Phi)| \exp(i\Delta\delta_D(\Phi)) d\Phi}{\sqrt{\int_i |A_{D^0}(\Phi)|^2 d\Phi \int_i |A_{\bar{D}^0}(\Phi)|^2 d\Phi}}$$

Binned Measurement of $\Delta \delta_D(\Phi)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Binned Measurement of CKM parameters

- Then use results c_i, s_i from ψ(3770) data as inputs and perform 'model-independent' measurements of CKM parameters by splitting the Dalitz plane in to i = ±1, ±2, ±N bins of Δδ_D using some binning scheme (built from a model).
- No more model systematics, but lose statistical precision due to binning and introduce systematics from the BESIII input.

$$\blacktriangleright \langle N_i^{B^-} \rangle \propto F_i + (x_-^2 + y_-^2) \overline{F}_i + 2\sqrt{F_i \overline{F}_i} (c_i x_- + s_i y_-)$$

$$\blacktriangleright \langle N_i^{\mathcal{B}^+} \rangle \propto \bar{F}_i + (x_+^2 + y_+^2) F_i + 2\sqrt{F_i \bar{F}_i} (c_i x_+ - s_i y_+)$$

- The binned analysis at LHCb (https://arxiv.org/abs/1806.01202 with 9fb^{-1} obtained $\gamma = (68.7^{+5.2}_{-5.1})^{\circ}$.
- lnitially thought that binning $\Delta \delta_D(\Phi)$ equally would yield best precision (smallest changes in $\Delta \delta_D(\Phi)$ in each bin.
- Further optimisations for the binning scheme have been performed - can get approximately 85% of the precision of the MD method https://arxiv.org/abs/1010.2817.

Quasi Model Independent measurement of $\Delta \delta_D$

- If |A_D⁰(Φ)| is close to the 'truth' (i.e. that we trust the results for |A_D⁰(Φ)| from the B-Factories).
- Belle-BaBar have no access to $\Delta \delta_D(\Phi)$ since only $D^0 \to K_S^0 \pi^+ \pi^-$ is studied.
- We attempt to 'correct' the Δδ_D(Φ) that the Belle-BaBar model produces
- Replace Δδ_D(Φ) with Δδ_D(Φ) + f(Φ|C), correcting the strong phase from a given model
- ► This is different from the 'Binned' method which calculates quantities that depend on $\Delta \delta_D(\Phi)$ in a model independent way
- We do not bin Φ at all we attempt to do a point by point correction to the strong phase in the two-dimensional Dalitz phase-space using correlated D⁰D̄⁰ prepared states (i.e. ψ(3770) → D⁰D̄⁰ with at least one deccaying to K⁰_Sπ⁺π⁻.

Quasi Model Independent measurement of $\Delta \delta_D$

f(Φ|C) is given as a two-dimensional polynomial in Dalitz space, Φ = (m²₊, m²₋):

$$f(\Phi|C) = \sum_{i=0}^{O} \sum_{j=0}^{O-i} C_{i,j} P_i(m_+^2) P_j(m_-^2)$$

• To preserve antisymmetry of $\Delta \delta_D(\Phi)$, we require $f(\Phi) = -f(\Phi^T)$,

• Can achieve this with transformation $\Phi = (m_+^2, m_-^2) \rightarrow \Phi' = (w_+(m_+^2, m_-^2), w_-(m_+^2, m_-^2)):$

$$w_+(m_+^2, m_-^2) = m_+^2 + m_-^2$$

 $w_-(m_+^2, m_-^2) = m_-^2 - m_+^2$

► Then these one-dimensional polynomials, $P_i(w_+)P_{2j+1}(w_-)$, i, j = 0, 1, 2...O build up the two-dimensional polynomial $f(\Phi|C)$ with $C_{i,2j+1}$ as the free parameters.

Quasi Model Independent measurement of $\Delta \delta_D$

- Begin with Dalitz
 Coordinates m²₊, m²₋.
- Right shows a polynomial with C_{0,1} = 1.

► Rotation of
$$(m_+^2, m_-^2)$$
 to
 $(w_+(m_+^2, m_-^2), w_-(m_+^2, m_-^2))$
is one way to build
polynomials that obey
 $f(m_+^2, m_-^2) = -f(m_-^2, m_+^2).$

Form of correction

So we have the final form of our polynomial, $f(\Phi|C) = f(m_+^2, m_-^2|C)$:

$$egin{aligned} f(m_+^2,m_-^2|\mathcal{C}) &= \sum_{i=0}^{O(\mathcal{C})} \sum_{j=0}^{O(\mathcal{C})-i} \mathcal{C}_{i,2j+1} \ & imes \mathcal{P}_i^{ ext{legendre}}(w_+(m_+^2,m_-^2)) \ & imes \mathcal{P}_{2j+1}^{ ext{legendre}}(w_-'(m_+^2,m_-^2)) \end{aligned}$$

with O(C) as our 'order', we chose Legendre polynomials for $P_i(x)$ since they gave smaller correlations of the polynomials we considered ('simple' $(P_i(x) = x^i)$ and 'Chebyshev').

Toy Monte Carlo

We used AmpGenhttps://github.com/GooFit/AmpGen to generate toy ψ(3770) → D⁰D̄⁰ and B[±] → DK[±] samples.

Tag Type		$N_{\text{Generated}}$	$N_{ m BESIII2020}$		
CP Odd (K^+K^-)		500	443 ± 22		
CP Even $(K_S^0 \pi^0)$		500	643 ± 26		
D^0 flavour $(ilde{K^+}\pi^-)$		5000	4740 ± 71		
$ar{D}^0$ flavour $(K^-\pi^+)$		5000	4740 ± 71		
Double Tag $K_S^0 \pi^+ \pi^-$		1000	899		
https://̆arxiv.org/abs/2002.12791					
Tag Type	N _{Generated}	$N_{ m LHCb-2021}$			
$B^- \rightarrow DK^-$	20000	$\overline{(3798\pm41)+(8735\pm89)}$			
$B^+ ightarrow DK^+$	20000	$(3798 \pm 41) + (8735 \pm 89)$			
https://arxiv.org/abs/2010.08483					

Comparison of CKM precision between unbinned, QMI and binned measurements of CKM parameters

Comparison of CKM precision between unbinned, QMI and binned measurements of CKM parameters

Impact of a bias in $\Delta \delta_D$ on the CKM measurement

Define a 'Gaussian' bias to
$$\Delta \delta_D(\Phi)$$
,
$$f_G(\Phi|\mu_+, \mu_-, \sigma_+, \sigma_-, A, w_-^0)$$

$$f(\Phi) = A \times \operatorname{erf}\left(\frac{w_-(m_+^2, m_-^2)}{w_-^0}\right) \times \begin{cases} G(m_+^2, \mu_+, \sigma_+)G(m_-^2, \mu_-, \sigma_-) & m_+^2 > m_-^2 \\ G(m_-^2, \mu_+, \sigma_+)G(m_+^2, \mu_-, \sigma_-) & m_+^2 > m_-^2 \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

An extreme example of a bias to $\Delta \delta_D(\Phi)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Recovery of $\Delta \delta_D(\Phi)$ with our method

Deciding on the order of the correcting polynomial in the QMI method

• • • • • • • • э

Summary

- lntroduced a new method to measure $\Delta \delta_D(m_+^2, m_-^2)$.
- Method has much greater precision than the binned method.
- Method recovers from bias to $\Delta \delta_D(m_+^2, m_-^2)$ and therefore avoids large shifts in CKM parameters .
- $\blacktriangleright \ \sigma_{\rm MD}^{\rm stat} < \sigma_{\rm QMI}^{\rm stat} < \sigma_{\rm Binned}^{\rm stat}.$

Next...

- Write the method paper (In progress).
- Optimize implementation of method (lots of thanks to Tim Evans for creating and supporting AmpGen).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Actually use the method in a measurement with data.

Backup Slides

(4日) (個) (目) (目) (目) (の)()

Optimal Binning scheme

https://arxiv.org/abs/1904.01129 https://arxiv.org/abs/1010.2817

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Toy K^+K^- v.s. $K^0_S\pi^+\pi^-$

ъ æ Toy $K_S^0 \pi^0$ v.s. $K_S^0 \pi^+ \pi^-$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Toy $K^+\pi^-$ v.s. $K^0_S\pi^+\pi^-$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Toy $K^-\pi^+$ v.s. $K_S^0\pi^+\pi^-$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Toy $K_S^0\pi^+\pi^-$ v.s. $K_S^0\pi^+\pi^-$

<ロト < 部 ト < 注 > э

Toy $B^-
ightarrow Dh^- \ D
ightarrow K^0_S \pi^+ \pi^-$

 Toy $B^+ \rightarrow Dh^+ \ D \rightarrow K^0_S \pi^+ \pi^-$

Sac

æ

Deciding on the order of the correcting polynomial in the QMI method

э

< ∃ →

Recovery of $\Delta \delta_D(\Phi)$ with our method

Stretching w₊, w₋

Can stretch the input parameters into a square with:

$$w'_{-} = \frac{\alpha w_{-}}{bw_{+} + 1 - \varepsilon}$$

on right: $\alpha = 2, b = 1, \varepsilon = 0.01$

(日)

э