

Model Independent Measurement of CKM γ using $B^{\pm} \rightarrow D^0 (\rightarrow 2\pi^+ 2 \pi^-) K^{\pm}$

Benedict Westhenry, Claire Prouve, Jonas Rademacker, Mark Whitehead

bwesthen@cern.ch

4th April, 2022

The CKM Matrix

- Quarks can change flavour
- CKM matrix quantifies transition amplitudes:

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

• Must be unitary:

$$V_{CKM}^{\dagger}V_{CKM}=I$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

What is γ ?

- The angle with one of the largest uncertainties in the unitary triangle. It accounts for the charge-parity violating phase between b->u and b->c quark transitions.
- γ is theoretically (and experimentally) very clean so sets a benchmark for the SM.
- Improving the measurement of the CKM angle γ is a key physics goal for LHCb.
- Current LHCb combination measurement is $(65.4^{+3.8}_{-4.2})^{\circ}$ (JHEP 12 (2021) 141)

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

Motivation

- The charge parity violation described by γ accounts for some of the matter and antimatter difference we observe.
- The extent of the matter and anti-matter asymmetry we observe in the Universe is not accounted for in the standard model.

Motivation

- $B^{\pm} \rightarrow D^0 K^{\pm}$ decays are predominantly mediated by tree-level processes.
- Physics beyond the standard model is expected to manifest itself as virtual particles within loop diagrams.
- Tree vs loop diagram measurements could point to New Physics (NP)

Motivation

What we're aiming for

Sensitivity to γ

• γ can be measured through interference of $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow \overline{D}^0 K^{\pm}$.

Sensitivity to γ

- γ can be measured through interference of $B^{\pm} \rightarrow D^0 K^{\pm}$ and $B^{\pm} \rightarrow \overline{D}^0 K^{\pm}$.
- Observation of the interference pattern over the 5-D phase space, since D is reconstructed as $4\pi^{\pm}$, increases the sensitivity to γ .

Model Independent Method

• GGSZ method with $D^0 \rightarrow 2\pi^+ 2\pi^-$:

- This achieved by dividing the 5-D D decay phase space into bins according to strong phase difference and integrating over each bin.
- 10 bin pairs, the 5 positive bins are calculated using:

$$\begin{split} &\Gamma(B^+ \to DK^+, D \to f_i) \propto T_i^f r_B^2 + \bar{T}_i^f + 2\sqrt{T_i^f \bar{T}_i^f} (c_i^f x_+ - s_i^f y_+) \\ &\Gamma(B^- \to DK^-, D \to f_i) \propto \bar{T}_i^f r_B^2 + T_i^f + 2\sqrt{T_i^f \bar{T}_i^f} (c_i^f x_- + s_i^f y_-) \\ &\text{Where, } x_{\pm} = r_B \cos(\delta_B \pm \gamma) \text{ and } y_{\pm} = r_B \sin(\delta_B \pm \gamma) \\ &\text{and } r_B^2 = x_{\pm}^2 + y_{\pm}^2. \end{split}$$

- Hadronic parameter inputs $(c_i, s_i, T_i, \overline{T}_i)$ from CLEO-c data in 5 different binning schemes and varying numbers of bins (JHEP 01 (2018) 144).
- Symmetry of self-conjugate D meson final state 2pi+2pi- can be exploited by defining bins in pairs which map onto each other.

Example binning scheme for $D^0 \rightarrow K_s \pi \pi$, <u>CERN-THESIS-2017-334</u> (Babar 2008 binning scheme)

Hadronic Parameters

- S. Harnew and C. Prouve (JHEP 01 (2018) 144) measured the hadronic parameters model independently with Cleo-c data for 5 binnings using quantum correlated $\overline{D}D$ decays.
- The hadronic parameters are related only to the *D* decays (not the *B* decay.)

Sensitivity Study

- Run 1 + Run 2 event yield 9000 events
- Generated gaussian B^{\pm} mass distributions of $B^{\pm} \rightarrow \overline{D}{}^{0}K^{\pm}$, $D \rightarrow 4\pi^{\pm}$ decays
- Hadronic parameters $(c_i, s_i, T_i, \overline{T}_i)$ constrained according to uncertainties and correlation. 5 different binning schemes all with 1-5bin options.
- Fit for 2 sets of parameters:
 - γ , r_B , δ_B .
 - x_+ , x_- , y_+ , y_- .

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$
$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

11

- Sensitivity to $\gamma \sim 15^{\circ}$ for run 1 + run 2 data
- Sensitivity to x_{\pm} , y_{\pm} ~ 0.031, 0.035, 0.065, 0.076 for run 1 + run 2 data

Simultaneous Global Fit (Unofficial, Preliminary)

- Pre-selections
- Boosted Decision Tree
- $D \to K_{\rm s}^0 \pi^+ \pi^-$ veto $480 \,\text{MeV} < m(\pi^+ \pi^-) < 505 \,\text{MeV}$
- Cut to reduce charmless bkg
- Particle ID Cuts
- Preliminary Fit for DK
- DPi used as a reference channel and constrain partially reconstructed background yields.

B->DK, D->2Pi+2Pi- (LHCb Unofficial)

B->DPi, D->2Pi+2Pi- (LHCb Unofficial)

Next Steps

• Optimise cuts.

B->DK, D->2Pi+2Pi- (LHCb Unofficial)

• Simultaneous fit combining all bins to determine shapes.

- Simultaneous fit to each bin, split by charge to determine x₊, x₋, y₊, y₋.
- Systematics.

Jnof

B->DPi, D->2Pi+2Pi- (LHCb Unofficial)

Conclusion

- γ being measured using $B^{\pm} \rightarrow D^0 (\rightarrow 2\pi^+ 2 \pi^-) K^{\pm}$ decays
- Model independent approach implemented.
- γ is evaluated at different points over the 5-dimensional phase space of the D meson decay, increasing the sensitivity to Gamma.
- This is the first time γ will be measured in the $D^0 \rightarrow 2\pi^+ 2\pi^-$ decay mode with a model independent approach using phase space bins.

Any Questions

Back Up

17

Example binning scheme from analysis $D^0 \rightarrow K_s \pi \pi$ analysis JHEP 10 (2014) 097

Model Independent Method

- GGSZ method with $D^0 \rightarrow 2\pi^+ 2 \pi^-$:
 - This achieved by dividing the 5-D D decay phase space into bins according to strong phase difference and integrating over each bin.
 - 10 bin pairs, the 5 positive bins are calculated using:

 $\Gamma(B^+ \to DK^+, D \to f_i) \propto T_i^f r_B^2 + \bar{T}_i^f + 2\sqrt{T_i^f \bar{T}_i^f (c_i^f x_+ - s_i^f y_+)}$

$$\Gamma(B^- \to DK^-, D \to f_i) \propto \bar{T}_i^f r_B^2 + T_i^f + 2\sqrt{T_i^f \bar{T}_i^f (c_i^f x_- + s_i^f y_-)} \qquad r$$

Where, $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$ and $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$ and $r_B^2 = x_{\pm}^2 + y_{\pm}^2$

- Hadronic parameter inputs $(c_i, s_i, T_i, \overline{T}_i)$ from CLEO-c data in 5 different binning schemes and varying numbers of bins (JHEP 01 (2018) 144). $K_{-i}^f = \overline{K}_i^f \qquad \overline{K}_{-i}^f = K_i^f$
- Symmetry of self-conjugate D meson final state 2pi+2pi- can be exploited by defining bins in pairs which map onto each other.

 $T_{-i}^f = \bar{T}_i^f \qquad \bar{T}_{-i}^f = T_i^f$

 $c_{-i}^{f} = c_{i}^{f} \qquad s_{-i}^{f} = -s_{i}^{f}$

Hadronic Parameters

- Sam Harnew and Claire Prouve (JHEP 01 (2018) 144) measured the hadronic parameters with Cleo-c data for 5 binnings using quantum correlated $\overline{D}D$ decays.
- The hadronic parameters are related only to the *D* decays (not the *B* decay)

$$\begin{split} c_i^f &= \frac{1}{\sqrt{K_i^f \bar{K}_i^f}} \int_i |A_{\mathbf{p}}^f| |\bar{A}_{\mathbf{p}}^f| \cos\left(\Delta \delta_{\mathbf{p}}^f\right) \phi(\mathbf{p}) \mathrm{d}\mathbf{p} \\ s_i^f &= \frac{1}{\sqrt{K_i^f \bar{K}_i^f}} \int_i |A_{\mathbf{p}}^f| |\bar{A}_{\mathbf{p}}^f| \sin\left(\Delta \delta_{\mathbf{p}}^f\right) \phi(\mathbf{p}) \mathrm{d}\mathbf{p} \\ f_i^f &= \frac{K_i^f}{\sum_i K_i^f} \\ T_i^f &= \frac{K_i^f}{\sum_i K_i^f} \\ \end{split}$$

Equal $\Delta \delta_{\mathbf{p}}^{4\pi}$ binning

i	c_i	s_i	T_{i}	\overline{T}_{i}
1	$0.881 \pm 0.053 \pm 0.044$	$0.303 \pm 0.149 \pm 0.046$	$0.237 \pm 0.008 \pm 0.004$	$0.217 \pm 0.008 \pm 0.003$
2	$0.501 \pm 0.084 \pm 0.046$	$-0.032 \pm 0.201 \pm 0.025$	$0.122 \pm 0.006 \pm 0.002$	$0.127 \pm 0.006 \pm 0.003$
3	$0.450 \pm 0.113 \pm 0.064$	$0.441 \pm 0.228 \pm 0.072$	$0.059 \pm 0.004 \pm 0.002$	$0.075 \pm 0.005 \pm 0.002$
4	$-0.201 \pm 0.167 \pm 0.068$	$0.132 \pm 0.304 \pm 0.039$	$0.039 \pm 0.004 \pm 0.002$	$0.045 \pm 0.004 \pm 0.001$
5	$ -0.397 \pm 0.152 \pm 0.036 $	$-0.446 \pm 0.381 \pm 0.132$	$0.040 \pm 0.004 \pm 0.001$	$0.039 \pm 0.004 \pm 0.002$
$ \tilde{F}^{4\pi}_+$	$0.768 \pm 0.021 \pm 0.013$			
Q	$0.733 \pm 0.052 \pm 0.035$			

Hadronic Parameters

- Bin average sine and cosine of strong phase difference (describes interference of $D^0 \rightarrow f$ and $\overline{D}^0 \rightarrow f$ amplitudes over the region *i*)
- The branching fraction for $D^0 \rightarrow fi$ and $\overline{D}{}^0 \rightarrow fi$ decays that populate phase space bin i
- Fraction of $D^0 \rightarrow f$ and $\overline{D}^0 \rightarrow f$ decays that populate phase space bin *i*.

$$\begin{split} c_i^f &= \frac{1}{\sqrt{K_i^f \bar{K}_i^f}} \int_i |A_{\mathbf{p}}^f| |\bar{A}_{\mathbf{p}}^f| \cos\left(\Delta \delta_{\mathbf{p}}^f\right) \phi(\mathbf{p}) \mathrm{d}\mathbf{p} \\ s_i^f &= \frac{1}{\sqrt{K_i^f \bar{K}_i^f}} \int_i |A_{\mathbf{p}}^f| |\bar{A}_{\mathbf{p}}^f| \sin\left(\Delta \delta_{\mathbf{p}}^f\right) \phi(\mathbf{p}) \mathrm{d}\mathbf{p} \end{split}$$

$$K_i^f = \int_i |A_\mathbf{p}^f|^2 \phi(\mathbf{p}) \mathrm{d}\mathbf{p} \qquad ar{K}_i^f = \int_i |ar{A}_\mathbf{p}^f|^2 \phi(\mathbf{p}) \mathrm{d}\mathbf{p}$$

$$T_i^f = \frac{K_i^f}{\sum_i K_i^f} \qquad \bar{T}_i^f = \frac{\bar{K}_i^f}{\sum_i \bar{K}_i^f}$$

Binning Schemes

• To best exploit the symmetries of the selfconjugate $4\pi^{\pm}$ final state, phase space bins are defined in pairs to map to each other under the CP operation s.t:

$$K_{-i}^f \equiv \bar{K}_i^f, \, \bar{K}_{-i}^f \equiv K_i^{\bar{f}}, \, c_{-i}^f \equiv c_i^f \text{ and } s_{-i}^f \equiv -s_i^f$$

- Equal and Variable $\Delta \delta_p^{4\pi}$:
 - Based on an equal/variable division of $\Delta \delta_p^{4\pi} = \arg(A_p^{4\pi}) \arg(\bar{A}_p^{4\pi})$
- Alternate binning
 - Also uses the relative magnitude of $D^0 \rightarrow 4\pi^{\pm}$ to $\overline{D^0} \rightarrow 4\pi^{\pm}$ amplitudes but also considers the variation across each bin.
- Optimal and Alternate Optimal
 - Defined to optimise the expected sensitivity to γ in $B^{\pm} \rightarrow DK^{\pm}$ decays.
- Note: Although an amplitude model is used to inspire the binning schemes the results are model-unbiased.

Equal $\Delta \delta_{\mathbf{p}}^{4\pi}$ binning

i	c_i	s_i	T_i	\overline{T}_i
1	$0.881\pm0.053\pm0.044$	$0.303 \pm 0.149 \pm 0.046$	$0.237 \pm 0.008 \pm 0.004$	$0.217 \pm 0.008 \pm 0.003$
2	$0.501\pm0.084\pm0.046$	$\text{-}0.032 \pm 0.201 \pm 0.025$	$0.122 \pm 0.006 \pm 0.002$	$0.127 \pm 0.006 \pm 0.003$
3	$0.450\pm0.113\pm0.064$	$0.441 \pm 0.228 \pm 0.072$	$0.059 \pm 0.004 \pm 0.002$	$0.075 \pm 0.005 \pm 0.002$
4	$-0.201\pm0.167\pm0.068$	$0.132 \pm 0.304 \pm 0.039$	$0.039 \pm 0.004 \pm 0.002$	$0.045 \pm 0.004 \pm 0.001$
5	$-0.397 \pm 0.152 \pm 0.036$	-0.446 \pm 0.381 \pm 0.132	$0.040 \pm 0.004 \pm 0.001$	$0.039 \pm 0.004 \pm 0.002$
$\tilde{F}^{4\pi}_+$	$0.768 \pm 0.021 \pm 0.013$			
Q	$0.733\pm0.052\pm0.035$			

Variable $\Delta \delta_{\mathbf{p}}^{4\pi}$ binning

		r		
i	c_i	s_i	T_i	\overline{T}_i
1	$0.966 \pm 0.101 \pm 0.052$	$0.086 \pm 0.316 \pm 0.068$	$0.069 \pm 0.005 \pm 0.001$	$0.062 \pm 0.004 \pm 0.003$
2	$0.810\pm0.070\pm0.051$	-0.136 \pm 0.229 \pm 0.051	$0.123 \pm 0.006 \pm 0.003$	$0.112 \pm 0.006 \pm 0.002$
3	$0.910 \pm 0.080 \pm 0.059$	$0.225 \pm 0.259 \pm 0.107$	$0.078 \pm 0.005 \pm 0.001$	$0.078 \pm 0.005 \pm 0.002$
4	$0.405 \pm 0.083 \pm 0.046$	$0.215 \pm 0.188 \pm 0.041$	$0.133 \pm 0.006 \pm 0.003$	$0.152 \pm 0.006 \pm 0.003$
5	$-0.154 \pm 0.105 \pm 0.047$	$0.213 \pm 0.207 \pm 0.031$	$0.090\pm0.005\pm0.003$	$0.103 \pm 0.006 \pm 0.002$
$\tilde{F}^{4\pi}_+$	$0.772 \pm 0.021 \pm 0.010$			
Q	$0.698\pm0.049\pm0.020$			

Alternative binning

i	c_i	s_i	T_i	\overline{T}_i
1	$-0.205 \pm 0.189 \pm 0.094$	$\textbf{-0.057} \pm 0.384 \pm 0.127$	$0.057 \pm 0.004 \pm 0.001$	$0.019 \pm 0.003 \pm 0.003$
2	$0.445 \pm 0.105 \pm 0.066$	-0.041 \pm 0.259 \pm 0.073	$0.129 \pm 0.006 \pm 0.004$	$0.060 \pm 0.005 \pm 0.004$
3	$0.888 \pm 0.053 \pm 0.045$	$\textbf{-0.150} \pm 0.159 \pm 0.027$	$0.263 \pm 0.008 \pm 0.007$	$0.192 \pm 0.007 \pm 0.004$
4	$0.530 \pm 0.097 \pm 0.044$	$0.239 \pm 0.209 \pm 0.084$	$0.121 \pm 0.006 \pm 0.004$	$0.073 \pm 0.005 \pm 0.003$
5	$-0.451 \pm 0.162 \pm 0.053$	-0.238 \pm 0.416 \pm 0.157	$0.059 \pm 0.004 \pm 0.002$	$0.027 \pm 0.003 \pm 0.002$
$\tilde{F}^{4\pi}_+$	$0.764 \pm 0.022 \pm 0.011$			
Q	$0.702\pm0.051\pm0.027$			

Optimal binning

- I					
i	c_i	s_i	T_i	\overline{T}_i	
1	$0.949 \pm 0.057 \pm 0.039$	$\text{-}0.041 \pm 0.171 \pm 0.041$	$0.193 \pm 0.007 \pm 0.004$	$0.173 \pm 0.007 \pm 0.003$	
2	$0.641 \pm 0.110 \pm 0.073$	$0.331 \pm 0.257 \pm 0.087$	$0.045 \pm 0.004 \pm 0.004$	$0.123 \pm 0.006 \pm 0.005$	
3	$0.542 \pm 0.094 \pm 0.059$	$0.034 \pm 0.224 \pm 0.063$	$0.135 \pm 0.006 \pm 0.005$	$0.070 \pm 0.005 \pm 0.004$	
4	$0.309 \pm 0.123 \pm 0.073$	$0.294 \pm 0.236 \pm 0.058$	$0.054 \pm 0.005 \pm 0.003$	$0.092 \pm 0.005 \pm 0.002$	
5	$-0.492 \pm 0.130 \pm 0.041$	$0.665 \pm 0.256 \pm 0.100$	$0.069 \pm 0.004 \pm 0.002$	$0.045 \pm 0.004 \pm 0.002$	
$\tilde{F}^{4\pi}_+$	$0.768 \pm 0.021 \pm 0.012$				
Q	$0.757\pm0.052\pm0.026$				

Optimal-alternative binning

i	c_i	s_i	T_i	\overline{T}_i
1	$0.279\pm0.143\pm0.101$	$-0.379 \pm 0.291 \pm 0.104$	$0.096 \pm 0.005 \pm 0.002$	$0.032 \pm 0.004 \pm 0.005$
2	$0.622\pm0.095\pm0.059$	-0.486 \pm 0.237 \pm 0.072	$0.123 \pm 0.006 \pm 0.004$	$0.055 \pm 0.004 \pm 0.003$
3	$0.969\pm0.057\pm0.038$	-0.089 \pm 0.162 \pm 0.038	$0.202 \pm 0.007 \pm 0.005$	$0.164 \pm 0.007 \pm 0.003$
4	$0.463\pm0.099\pm0.046$	$0.245 \pm 0.215 \pm 0.067$	$0.134 \pm 0.006 \pm 0.005$	$0.077 \pm 0.005 \pm 0.004$
5	$-0.332 \pm 0.138 \pm 0.041$	$0.484 \pm 0.263 \pm 0.132$	$0.074 \pm 0.005 \pm 0.002$	$0.043 \pm 0.004 \pm 0.003$
$\tilde{F}^{4\pi}_+$	$0.771\pm0.021\pm0.010$			
Q	$0.760\pm0.057\pm0.017$			

Likelihood scans for γ , r_B , δ_B fitter

- Ambiguities arising from the $\cos(\delta_B \pm \gamma)$ and $\sin(\delta_B \pm \gamma)$ terms.
- Two primary maxima in both plots as expected from the cos and *sin* relation
- Two secondary maxima in Alternate binning are more prevalent than Equal $\Delta \delta_p^{4\pi}$ binning explains fitters reduced performance in the Alternate binning case.

Full PDFs

$PDF^{D\pi channel} = N_{D\pi sig}PDF^{D\pi sig} + N_{D\pi comb}PDF^{D\pi comb} + N_{DK \to D\pi}PDF^{DK \to D\pi} + N_{D\pi partial}PDF^{D\pi partial}$ where,

 $N_{D\pi partial}PDF^{D\pi partial} = N_{partial1}PDF^{partial1} + N_{partial2}PDF^{partial2} + N_{partial3}PDF^{partial3} + N_{partial4}PDF^{partial4} + N_{partial$

$$PDF^{DK \ channel} = N_{DKsig}PDF^{DKsig} + N_{DKcomb}PDF^{DKcomb} + N_{charmless}PDF^{charmless} + N_{D\pi \rightarrow DK}PDF^{D\pi \rightarrow DK} + N_{DKpartial}PDF^{DKpartial} + N_{D\pi \rightarrow DKpartial}PDF^{D\pi \rightarrow DKpartial}$$

where,

 $N_{DKpartial}PDF^{DKpartial} = N_{partial5}PDF^{partial5} + N_{partial6}PDF^{partial6} + N_{partial7}PDF^{partial7} + N_{partial8}PDF^{partial8} + N_{partial9}PDF^{partial9}$

$$\begin{split} N_{D\pi \rightarrow DK partial} PDF^{D\pi \rightarrow DK partial} &= N_{partial \rightarrow 5} PDF^{partial 1 \rightarrow 5} + N_{partial 2 \rightarrow 6} PDF^{partial 2 \rightarrow 6} + N_{partial 3 \rightarrow 7} PDF^{partial 3 \rightarrow 7} \\ &+ N_{partial 4 \rightarrow 8} PDF^{partial 4 \rightarrow 8} \end{split}$$