Searching for New Physics through the decay $B^0\to K^{*0}\mu^+\mu^-$ at LHCb

IoP HEPP & APP Annual Conference 2022

Matthew Birch on behalf of the LHCb Collaboration

Imperial College London

Imperial College London

Searching for New Physics through the decay $B^0 o \kappa^{*0} \mu^+ \mu^-$ at LHCb

Flavour anomalies

- In recent years experiments have measured quantities with discrepancies with respect to the Standard Model (SM).
- These include ratios of branching fractions (e.g. $R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$), angular coefficients, and branching fractions.

[Nat. Phys. 18, 277-282 (2022)]

[HFLAV]

[PRL 125.011802 (2020)]

Flavour anomalies

- These anomalies point to potential contributions from New Physics.
- Parameterise the weak effective Hamiltonian with Wilson Coefficients C_i, which describe couplings.
- Global fits e.g. [arxiv.2104.08921] claim the tension to be $> 5\sigma$.

Searching for New Physics through the decay $B^0 \rightarrow \kappa^{*0} \mu^+ \mu^-$ at LHCb

The LHCb experiment

 LHCb (Large Hadron Collider beauty) is designed to measure decays and take precision measurements involving beauty and charm hadrons.

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

Why $B^0 ightarrow K^{*0} \mu^+ \mu^-$?

- The decay $B^0 \to K^{*0} \mu^+ \mu^-$ requires a $b \to s$ Flavour Changing Neutral Current, thus it is suppressed in the SM.
- Due to the SM suppression and the coupling to 3rd generation, this decay is highly sensitive to New Physics (NP).
- These processes are sensitive to contributions towards O(10)TeV, which is inaccessible by current LHC direct searches.

 $\begin{array}{c} \mbox{respect to the SM} \left[\mbox{PRL 125.011802} \\ \mbox{Searching for New Physics through the decay B^0} \rightarrow $K^{*0}\mu^+\mu^-$ at LHCb $\eqref{eq:LHCb}$ \eqref{eq:LHCb} \end{array} \right] \label{eq:LHCb}$

Angular analysis

• The decay rate of $B^0 \to K^{*0}\mu^+\mu^-$ is completely described by the three angles θ_I , θ_K and ϕ and the invariant mass of the dimuon system squared, $q^2 = m_{\mu^+\mu^-}^2$.

Differential decay rate is given by [JHEP 01 (2009) 019]

$$\frac{\mathrm{d}^4 \Gamma[B^0 \to K^{*0} \mu^+ \mu^-]}{\mathrm{d} \cos \theta_l \mathrm{d} \cos \theta_k \mathrm{d} \phi \mathrm{d} q^2} = \frac{9}{32\pi} \sum_i J_i(q^2) f_i(\Omega) \varepsilon(\Omega, q^2),$$

where

- *J_i* are *q*²-dependent angular coefficients. These are written in terms of bilinear combinations of the complex decay amplitudes.
- f_i are combinations of spherical harmonics involving θ_l , θ_K and ϕ .
- $\blacksquare \ \varepsilon$ is the acceptance function.

Searching for New Physics through the decay $B^0 o \kappa^{*0} \mu^+ \mu^-$ at LHCb

q^2 spectrum of $b ightarrow s\ell\ell$

- Figure below shows $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$ of $b \to s\ell\ell$ processes.
- $b \rightarrow s\ell\ell$ decays are sensitive to C_7 , C_9 , and C_{10} , which describe electromagnetic, vector, and axial-vector couplings respectively.

• There are disagreements between theorists with regards to the interplay between the $c\bar{c}$ resonances and the non-resonant parts.

Since $B \rightarrow V\ell\ell$ is measured and not $b \rightarrow s\ell\ell$, predictions also suffer from hadronic uncertainties.

Searching for New Physics through the decay ${\cal B}^0 o {\cal K}^{*0} \mu^+ \mu^-$ at LHCb

Amplitude ansatz

- Only the angular coefficients have been measured before. For this analysis, we will measure the **amplitudes**.
 - The amplitudes give a complete description of $B^0 \to K^{*0} \mu^+ \mu^-$.
 - Write the amplitudes as \mathcal{A}_{P}^{χ} where χ is the chirality of the dimuon system (L, R), and P is the polarisation of K^{*0} (||, \perp , 0, S).
- Go **unbinned** in *q*² in order to increase sensitivity to New Physics by exploiting the information in the *q*² shape of the amplitudes and the angular coefficients.
- There are many disagreements between theorists in terms of how to parameterise the Standard Model and New Physics models.
 - Consider a parameterisation of the amplitudes which is not so model dependent.

Solution: Use an amplitude ansatz.

Method is proposed by U. Egede, M. Patel, K. Petridis in JHEP 06 (2015) 084.

Searching for New Physics through the decay $B^0 \rightarrow \kappa^{*0} \mu^+ \mu^-$ at LHCb

Apply the ansatz

$$\mathcal{A} = \sum_i \alpha_i L_i(q^2)$$

to the amplitudes, where L_i are Legendre polynomials of order i.

- Determine the amplitude coefficients using an unbinned extended maximum likelihood fit.
- Shown below are **theoretical predictions** obtained via EOS and fits to these predictions with **5**-parameter Legendre ansatzes for $Re(A_0^L)$.

How to choose the correct ansatz?

- Example with a pseudoexperiment generated from a SM model.
 - Blue: expected distribution from statistical fluctuations.
 - Red: comparison of pseudoexperiment/fit.

Preparing for performing the goodness-of-fit test to blinded data.

Searching for New Physics through the decay $B^0 \rightarrow \kappa^{*0} \mu^+ \mu^-$ at LHCb

Fit details

- The q^2 regions of interest are
 - $1.25 < q^2 < 8 \text{ GeV}^2/c^4$, where the B^0 and $\overline{B^0}$ amplitudes are fitted separately.
 - $11 < q^2 < 12.5 \text{ GeV}^2/c^4$ (region between the J/ψ and the $\psi(2S)$). This region offers crucial input to the resonance contributions. Here we fit the B^0 and $\overline{B^0}$ amplitudes combined.
 - 9.223 $< q^2 <$ 9.966 GeV²/c⁴, where the J/ψ is located (control mode region).
- Fit the combined Run 1 + Run 2 datasets (9 fb⁻¹).

Searching for New Physics through the decay ${\it B}^0
ightarrow {\it K}^{*0} \mu^+ \mu^-$ at LHCb

Example projections in the region $1.25 < q^2 < 8 \ { m GeV}^2/c^4$

Example projections from a fit to a pseudoexperiment.

Amplitude band plots from pseudoexperiments

- Shown are error band plots for Im(A^R_⊥), Re(A^L_⊥), Im(A^L_⊥), and Re(A^L₀) in the region 1.25 < q² < 8 GeV²/c⁴, where the amplitudes are parameterised with Legendre polynomials up to 5 orders.
- Black = true value, red = median, yellow and blue = 1σ and 2σ bands.

Angular coefficients band plots from pseudoexperiments

- As mentioned, the amplitudes give a complete description of the decay.
- One can construct angular coefficients from the amplitudes such as S_3 , S_7 , A_{FB} , and P'_5 . These are shown below.

Searching for New Physics through the decay $B^0 o {\cal K}^{*0} \mu^+ \mu^-$ at LHCb

Applications of our results

Aim to present amplitude components with uncertainties and correlations.

Parameterise LHCb data in a way which can be used by theorists.

- This would allow one to generate pseudoexperiments and fit with any choice of model.
- Can also fit the Wilson coefficients e.g. by using flavio. Below is the $1\sigma Re(C_9^{NP})/Re(C_{10}^{NP})$ contour when fitting a pseudoexperiment.

Searching for New Physics through the decay ${\it B}^0 \to {\it K}^{*0} \mu^+ \mu^-$ at LHCb

- This analysis will provide the amplitude components and correlations for the decay $B^0 \rightarrow K^{*0}\mu^+\mu^-$ in the regions $1.25 < q^2 < 8 \text{ GeV}^2/c^4$ and $11 < q^2 < 12.5 \text{ GeV}^2/c^4$.
- Developed a model-independent method to ascertain the required ampliutde ansatz polynomial orders.
- LHCb data would thus be parameterised in a model-independent way which includes statistical and systematic uncertainties.
- This would allow one to generate pseudoexperiments from these results and fit with any choice of model.
- Very exciting times ahead!

Searching for New Physics through the decay $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb 4th April 2022 matthew.birch@cern.ch

Back up

Angular distribution

$$\frac{\mathrm{d}^{4}\Gamma[B^{0}\rightarrow K^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}\cos\theta_{i}\mathrm{d}\cos\theta_{K}\mathrm{d}\phi\mathrm{d}q^{2}}=\frac{9}{32\pi}\sum_{i}J_{i}f_{i}(\Omega)$$

i	J _i	f _i
1 <i>s</i>	$\frac{\frac{3}{4}\left[\mathcal{A}_{\parallel}^{\mathrm{L}} ^{2}+ \mathcal{A}_{\perp}^{\mathrm{L}} ^{2}+ \mathcal{A}_{\parallel}^{\mathrm{R}} ^{2}+ \mathcal{A}_{\perp}^{\mathrm{R}} ^{2}\right]}{$	$\sin^2 \theta_K$
1 <i>c</i>	$ \mathcal{A}_0^{\rm L} ^2 + \mathcal{A}_0^{\rm R} ^2$	$\cos^2 \theta_K$
2 <i>s</i>	$rac{1}{4}\left[\mathcal{A}^{\mathrm{L}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{L}}_{\perp} ^2+ \mathcal{A}^{\mathrm{R}}_{\parallel} ^2+ \mathcal{A}^{\mathrm{R}}_{\perp} ^2 ight]$	$\sin^2 \theta_K \cos 2\theta_I$
2 <i>c</i>	$- \mathcal{A}_0^{\mathrm{L}} ^2 - \mathcal{A}_0^{\mathrm{R}} ^2$	$\cos^2 \theta_K \cos 2\theta_I$
3	$rac{1}{2}\left[\mathcal{A}_{\perp}^{\mathrm{L}} ^{2}- \mathcal{A}_{\parallel}^{\mathrm{L}} ^{2}+ \mathcal{A}_{\perp}^{\mathrm{R}} ^{2}- \mathcal{A}_{\parallel}^{\mathrm{R}} ^{2} ight]$	$\sin^2\theta_K\sin^2\theta_I\cos 2\phi$
4	$\sqrt{rac{1}{2} ext{Re}(\mathcal{A}_0^{ ext{L}}\mathcal{A}_\parallel^{ ext{L}*}+\mathcal{A}_0^{ ext{R}}\mathcal{A}_\parallel^{ ext{R}*})}$	$\sin 2\theta_K \sin 2\theta_I \cos \phi$
5	$\sqrt{2} \mathrm{Re}(\mathcal{A}_0^\mathrm{L} \mathcal{A}_\perp^\mathrm{L*} - \mathcal{A}_0^\mathrm{R} \mathcal{A}_\perp^\mathrm{R*})$	$\sin 2 heta_K \sin heta_I \cos \phi$
6 <i>s</i>	$2\mathrm{Re}(\mathcal{A}^\mathrm{L}_\parallel\mathcal{A}^\mathrm{L*}_\perp-\mathcal{A}^\mathrm{R}_\parallel\mathcal{A}^\mathrm{R*}_\perp)$	$\sin^2 \theta_K \cos \theta_I$
7	$\sqrt{2} \mathrm{Im}(\ddot{\mathcal{A}}_0^{\mathrm{L}} \mathcal{A}_{\parallel}^{\mathrm{L}*} - \ddot{\mathcal{A}}_0^{\mathrm{R}} \mathcal{A}_{\parallel}^{\mathrm{R}*})$	$\sin 2 heta_K \sin heta_I \sin \phi$
8	$\sqrt{rac{1}{2}} \mathrm{Im}(\mathcal{A}_0^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*}+\mathcal{A}_0^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin 2 heta_K \sin 2 heta_I \sin \phi$

Searching for New Physics through the decay ${\it B}^0\, \rightarrow\, \kappa^{*0} \mu^+ \mu^-\,$ at LHCb

$$\frac{\mathrm{d}^{4}\Gamma[B^{0}\rightarrow K^{*0}\mu^{+}\mu^{-}]}{\mathrm{d}\cos\theta_{I}\mathrm{d}\cos\theta_{K}\mathrm{d}\phi\mathrm{d}q^{2}}=\frac{9}{32\pi}\sum_{i}J_{i}f_{i}(\Omega)$$

i	J _i	f _i
9	$\operatorname{Im}(\mathcal{A}^{\mathrm{L}*}_{\parallel}\mathcal{A}^{\mathrm{L}}_{\perp}+\mathcal{A}^{\mathrm{R}*}_{\parallel}\mathcal{A}^{\mathrm{R}}_{\perp})$	$\sin^2 heta_K \sin^2 heta_I \sin 2\phi$
10	$rac{1}{3}\left[\mathcal{A}_{\mathrm{S}}^{\ddot{\mathrm{L}}} ^{2}+ \mathcal{A}_{\mathrm{S}}^{\mathrm{R}} ^{\ddot{2}} ight]$	1
11	$\sqrt{rac{4}{3}} ext{Re}(\mathcal{A}^{ ext{L}}_{ ext{S}}\mathcal{A}^{ ext{L}*}_{0}+\mathcal{A}^{ ext{R}}_{ ext{S}}\mathcal{A}^{ ext{R}*}_{0})$	$\cos \theta_K$
12	$-rac{1}{3}\left[\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} ^{2}+ \mathcal{A}_{\mathrm{S}}^{\mathrm{R}} ^{2} ight]$	$\cos 2\theta_I$
13	$-\sqrt{rac{4}{3}} ext{Re}(\mathcal{A}^{ ext{L}}_{ ext{S}}\mathcal{A}^{ ext{L}*}_{ ext{0}}+\mathcal{A}^{ ext{R}}_{ ext{S}}\mathcal{A}^{ ext{R}*}_{ ext{0}})$	$\cos \theta_K \cos 2\theta_I$
14	$\sqrt{rac{2}{3}} ext{Re}(\mathcal{A}^{ ext{L}}_{ ext{S}}\mathcal{A}^{ ext{L}*}_{\parallel}+\mathcal{A}^{ ext{R}}_{ ext{S}}\mathcal{A}^{ ext{R}*}_{\parallel})$	$\sin\theta_K\sin2\theta_I\cos\phi$
15	$\sqrt{rac{8}{3}} \mathrm{Re}(\mathcal{A}_\mathrm{S}^\mathrm{L} \mathcal{A}_\perp^\mathrm{L*} - \mathcal{A}_\mathrm{S}^\mathrm{R} \mathcal{A}_\perp^\mathrm{R*})$	$\sin\theta_K\sin\theta_I\cos\phi$
16	$\sqrt{rac{8}{3}} \mathrm{Im}(\mathcal{A}^{\mathrm{L}}_{\mathrm{S}}\mathcal{A}^{\mathrm{L}*}_{\parallel} - \mathcal{A}^{\mathrm{R}}_{\mathrm{S}}\mathcal{A}^{\mathrm{R}*}_{\perp})$	$\sin\theta_K\sin\theta_I\sin\phi$
17	$\sqrt{rac{2}{3}} \mathrm{Im}(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\mathcal{A}_{\perp}^{\mathrm{L}*}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\mathcal{A}_{\perp}^{\mathrm{R}*})$	$\sin heta_K \sin 2 heta_I \sin \phi$

Searching for New Physics through the decay ${\it B}^0\, \rightarrow\, \kappa^{*0} \mu^+ \mu^-\,$ at LHCb

- The angular and q² distributions are distorted due to selection cuts, reconstruction and detector effects.
- Take this into account by computing an acceptance function, modelled as the sum

$$\varepsilon(\cos\theta_I,\cos\theta_K,\phi,q^2) = \sum_{ijmn} c_{ijmn} L_i(\cos\theta_I) L_j(\cos\theta_K) L_m(\phi) L_n(q^2),$$

where L_a are Legendre polynomials of order a and c_{ijmn} are coefficients obtained via method of moments.

• Use BDTs to determine the goodness-of-fit of the acceptance function.

Searching for New Physics through the decay $B^0 o \kappa^{*0} \mu^+ \mu^-$ at LHCb

Acceptance goodness-of-fit

Example goodness of fit plots shown below.

- Blue: expected distribution from statistical fluctuations
- Red: comparison of MC/fit
- Left: bad fit (p-value = 0%); right: good fit (p-value = 100%)

Previous generations had a systematic uncertainty in the required polynomial orders. With this goodness-of-fit test, one can determine most suitable orders and remove the systematic.

Searching for New Physics through the decay $B^0 o {\cal K}^{*0} \mu^+ \mu^-$ at LHCb

Symmetries of the 4D angular distribution

• The 4D angular distribution obeys the symmetry $n_i \rightarrow n'_i = U n_i$, where

• $n_i = n_{\parallel}, n_{\perp}, n_0, n_{00}$ are complex amplitude vectors, e.g. $n_0 = \begin{pmatrix} \mathcal{A}_0^L \\ \mathcal{A}_0^{R*} \end{pmatrix}$

$$U = \begin{pmatrix} e^{i\phi_L} & 0\\ 0 & e^{-i\phi_R} \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cosh i\eta & -\sinh i\eta\\ -\sinh i\eta & \cosh i\eta \end{pmatrix}$$

- Thus the number of amplitudes (16) is greater then the number of degrees of freedom (16 4 = 12).
- Thus apply a basis-fixing condition where $Im(\mathcal{A}_{\perp}^{R}) = Im(\mathcal{A}_{0}^{L}) = Re(\mathcal{A}_{0}^{R}) = Im(\mathcal{A}_{0}^{R}) = 0.$
 - Obtain the angles which satisfies the transformation from the SM basis to the new basis.
 - Find the new basis by transforming all amplitude vectors according to the angles obtained.

Searching for New Physics through the decay $B^0 \rightarrow \kappa^{*0} \mu^+ \mu^-$ at LHCb

- Parameterise the B mass lineshape as a double-sided Crystal Ball function, $P_B = f_{core} P_{CB}(\mu, \sigma_1, \alpha_1, n_1) + (1 - f_{core}) P_{CB}(\mu, \sigma_2, \alpha_2, n_2)$
- Add in a second signal component due to the B⁰_s with a fixed shift of the mean μ and fixed relative yield.

- Describe the background in the B mass by an exponential distribution.
- The background in the angles and q^2 are described by Chebyshev polynomials with maximum order = 2.

Control mode fits - $B^0 \rightarrow K^{*0} J/\psi$ (Run 1)

• Note: large pulls at low $\cos \theta_K$ are due to $J/\psi \pi$ exotic states.

Searching for New Physics through the decay $B^0 o {\cal K}^{*0} \mu^+ \mu^-$ at LHCb

4th April 2022

Example projections in the interresonance region

Example projections from a fit to a pseudoexperiment.

