Searching for New Physics through the decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$at LHCb

IoP HEPP \& APP Annual Conference 2022

Matthew Birch on behalf of the LHCb Collaboration

Imperial College London

Imperial College London

Flavour anomalies

- In recent years experiments have measured quantities with discrepancies with respect to the Standard Model (SM).
- These include ratios of branching fractions (e.g. $R_{K} \equiv \frac{\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}$, angular coefficients, and branching fractions.

[Nat. Phys. 18, 277-282 (2022)]

[HFLAV]

[PRL 127.151801 (2021)]

[PRL 125.011802 (2020)]

[JHEP 04 (2017) 142]

[JHEP 06 (2014) 133]

Flavour anomalies

- These anomalies point to potential contributions from New Physics.
- Parameterise the weak effective Hamiltonian with Wilson Coefficients C_{i}, which describe couplings.
- Global fits e.g. [arxiv.2104.08921] claim the tension to be $>5 \sigma$.
$C_{7}=$ electromagnetic coupling
$C_{9}=$ vector coupling
$C_{10}=$ axial-vector coupling

The superscripts ${ }^{V}$ and ${ }^{U}$ denote lepton-flavour violating and universal couplings respectively.

The LHCb experiment

- LHCb (Large Hadron Collider beauty) is designed to measure decays and take precision measurements involving beauty and charm hadrons.
[Int. J. Mod. Phys. A 30, 1530022 (2015)]

Why $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-} ?$

- The decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$requires a $b \rightarrow s$ Flavour Changing Neutral Current, thus it is suppressed in the SM.
- Due to the SM suppression and the coupling to 3rd generation, this decay is highly sensitive to New Physics (NP).
- These processes are sensitive to contributions towards $\mathcal{O}(10) \mathrm{TeV}$, which is inaccessible by current LHC direct searches.

- Latest published binned analysis of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$shows discrepancies with respect to the SM [PRL 125.011802 (2020)].

Angular analysis

- The decay rate of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$is completely described by the three angles θ_{l}, θ_{K} and ϕ and the invariant mass of the dimuon system squared, $q^{2}=m_{\mu^{+} \mu^{-}}^{2}$.

■ Differential decay rate is given by [JHEP 01 (2009) 019]

$$
\frac{\mathrm{d}^{4} \Gamma\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \cos \theta_{l} \cos \theta_{K} \mathrm{~d} \phi q^{2}}=\frac{9}{32 \pi} \sum_{i} J_{i}\left(q^{2}\right) f_{i}(\Omega) \varepsilon\left(\Omega, q^{2}\right),
$$

where

- J_{i} are q^{2}-dependent angular coefficients. These are written in terms of bilinear combinations of the complex decay amplitudes.
- f_{i} are combinations of spherical harmonics involving θ_{l}, θ_{K} and ϕ.
- ε is the acceptance function.

q^{2} spectrum of $b \rightarrow$ sll

- Figure below shows $\frac{\mathrm{d} \Gamma}{\mathrm{d} q^{2}}$ of $b \rightarrow s \ell \ell$ processes.
- $b \rightarrow s \ell \ell$ decays are sensitive to C_{7}, C_{9}, and C_{10}, which describe electromagnetic, vector, and axial-vector couplings respectively.

- There are disagreements between theorists with regards to the interplay between the $c \bar{c}$ resonances and the non-resonant parts.
- Since $B \rightarrow V \ell \ell$ is measured and not $b \rightarrow s \ell \ell$, predictions also suffer from hadronic uncertainties.

Amplitude ansatz

- Only the angular coefficients have been measured before. For this analysis, we will measure the amplitudes.
- The amplitudes give a complete description of $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$.
- Write the amplitudes as \mathcal{A}_{P}^{χ} where χ is the chirality of the dimuon system (L, R), and P is the polarisation of $K^{* 0}(\|, \perp, 0, S)$.
- Go unbinned in q^{2} in order to increase sensitivity to New Physics by exploiting the information in the q^{2} shape of the amplitudes and the angular coefficients.
- There are many disagreements between theorists in terms of how to parameterise the Standard Model and New Physics models.
- Consider a parameterisation of the amplitudes which is not so model dependent.

■ Solution: Use an amplitude ansatz.
■ Method is proposed by U. Egede, M. Patel, K. Petridis in JHEP 06 (2015) 084.

Amplitude ansatz

- Apply the ansatz

$$
\mathcal{A}=\Sigma_{i} \alpha_{i} L_{i}\left(q^{2}\right)
$$

to the amplitudes, where L_{i} are Legendre polynomials of order i.

- Determine the amplitude coefficients using an unbinned extended maximum likelihood fit.
- Shown below are theoretical predictions obtained via EOS and fits to these predictions with 5 -parameter Legendre ansatzes for $\operatorname{Re}\left(\mathcal{A}_{0}^{L}\right)$.

$\mathbf{S M}, J / \psi$ and ϕ phases $=0$

SM, phases $=\frac{\pi}{2}$

$N P$ with $\Delta C_{9}=-1$

How to choose the correct ansatz?

■ Example with a pseudoexperiment generated from a SM model.

- Blue: expected distribution from statistical fluctuations.
- Red: comparison of pseudoexperiment/fit.

Fit with 5-parameter ansatz p-value $=55 \%$

Fit with 4-parameter ansatz p-value $=4 \%$

- Preparing for performing the goodness-of-fit test to blinded data.

Fit details

- The q^{2} regions of interest are
- $1.25<q^{2}<8 \mathrm{GeV}^{2} / c^{4}$, where the B^{0} and $\overline{B^{0}}$ amplitudes are fitted separately.
- $11<q^{2}<12.5 \mathrm{GeV}^{2} / \mathrm{c}^{4}$ (region between the J / ψ and the $\psi(2 S)$). This region offers crucial input to the resonance contributions. Here we fit the B^{0} and $\overline{B^{0}}$ amplitudes combined.
- $9.223<q^{2}<9.966 \mathrm{GeV}^{2} / \mathrm{c}^{4}$, where the J / ψ is located (control mode region).
- Fit the combined Run $1+$ Run 2 datasets $\left(9 \mathrm{fb}^{-1}\right)$.

Example projections in the region $1.25<q^{2}<8 \mathrm{GeV}^{2} / c^{4}$

Example projections from a fit to a pseudoexperiment.

Amplitude band plots from pseudoexperiments

- Shown are error band plots for $\operatorname{Im}\left(\mathcal{A}_{\|}^{R}\right), \operatorname{Re}\left(\mathcal{A}_{\perp}^{L}\right), \operatorname{Im}\left(\mathcal{A}_{\perp}^{L}\right)$, and $\operatorname{Re}\left(\mathcal{A}_{0}^{L}\right)$ in the region $1.25<q^{2}<8 \mathrm{GeV}^{2} / c^{4}$, where the amplitudes are parameterised with Legendre polynomials up to 5 orders.
■ Black $=$ true value, red $=$ median, yellow and blue $=1 \sigma$ and 2σ bands.

Angular coefficients band plots from pseudoexperiments

- As mentioned, the amplitudes give a complete description of the decay.
- One can construct angular coefficients from the amplitudes such as S_{3}, S_{7}, $A_{F B}$, and P_{5}^{\prime}. These are shown below.

Searching for New Physics through the decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$at LHCb

Applications of our results

- Aim to present amplitude components with uncertainties and correlations.
- Parameterise LHCb data in a way which can be used by theorists.
- This would allow one to generate pseudoexperiments and fit with any choice of model.
- Can also fit the Wilson coefficients e.g. by using flavio. Below is the 1σ $\operatorname{Re}\left(C_{9}^{N P}\right) / \operatorname{Re}\left(C_{10}^{N P}\right)$ contour when fitting a pseudoexperiment.

Summary

- This analysis will provide the amplitude components and correlations for the decay $B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$in the regions $1.25<q^{2}<8 \mathrm{GeV}^{2} / c^{4}$ and $11<q^{2}<12.5 \mathrm{GeV}^{2} / c^{4}$.
- Developed a model-independent method to ascertain the required ampliutde ansatz polynomial orders.
- LHCb data would thus be parameterised in a model-independent way which includes statistical and systematic uncertainties.
- This would allow one to generate pseudoexperiments from these results and fit with any choice of model.
- Very exciting times ahead!

Back up

Angular distribution

$$
\frac{\mathrm{d}^{4} \Gamma\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \cos \theta_{l} \mathrm{~d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}=\frac{9}{32 \pi} \sum_{i} J_{i} f_{i}(\Omega)
$$

i	J_{i}	f_{i}		
$1 s$	$\frac{3}{4}\left[\left\|\mathcal{A}_{\\|}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\perp}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\\|}^{\mathrm{R}}\right\|^{2}+\left\|\mathcal{A}_{\perp}^{\mathrm{R}}\right\|^{2}\right]$	$\sin ^{2} \theta_{K}$		
$1 c$	$\left\|\mathcal{A}_{0}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{0}^{\mathrm{R}}\right\|^{2}$	$\cos ^{2} \theta_{K}$		
$2 s$	$\frac{1}{4}\left[\left\|\mathcal{A}_{\\|}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\perp}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\\|}^{\mathrm{R}}\right\|^{2}+\left\|\mathcal{A}_{\perp}^{\mathrm{R}}\right\|^{2}\right]$	$\sin ^{2} \theta_{K} \cos 2 \theta_{l}$		
$2 c$	$-\left\|\mathcal{A}_{0}^{\mathrm{L}}\right\|^{2}-\left\|\mathcal{A}_{0}^{\mathrm{R}}\right\|^{2}$	$\cos ^{2} \theta_{K} \cos 2 \theta_{l}$		
3	$\frac{1}{2}\left[\left\|\mathcal{A}_{\perp}^{\mathrm{L}}\right\|^{2}-\left\|\mathcal{A}_{\\|}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\perp}^{\mathrm{R}}\right\|^{2}-\left\|\mathcal{A}_{\\|}^{\mathrm{R}}\right\|^{2}\right]$	$\sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi$		
4	$\sqrt{\frac{1}{2}} \operatorname{Re}\left(\mathcal{A}_{0}^{\mathrm{L}} \mathcal{A}_{\\|}^{\mathrm{L} *}+\mathcal{A}_{0}^{\mathrm{R}} \mathcal{A}_{\\|}^{\mathrm{R} *}\right)$	$\sin 2 \theta_{K} \sin 2 \theta_{I} \cos \phi$		
5	$\sqrt{2} \operatorname{Re}\left(\mathcal{A}_{0}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L} *}-\mathcal{A}_{0}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R} *}\right)$	$\sin 2 \theta_{K} \sin \theta_{I} \cos \phi$		
$6 s$	$2 \operatorname{Re}\left(\mathcal{A}_{\\|}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L} *}-\mathcal{A}_{\\|}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R} *}\right)$	$\sin \theta_{K} \cos \theta_{l}$		
7	$\sqrt{2} \operatorname{Im}\left(\mathcal{A}_{0}^{\mathrm{L}} \mathcal{A}_{\\|}^{\mathrm{L} *}-\mathcal{A}_{0}^{\mathrm{R}} \mathcal{A}_{\\|}^{\mathrm{R} *}\right)$	$\sin 2 \theta_{K} \sin \theta_{l} \sin \phi$		
8	$\sqrt{\frac{1}{2}} \operatorname{Im}\left(\mathcal{A}_{0}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L} *}+\mathcal{A}_{0}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R} *}\right)$	$\sin 2 \theta_{K} \sin 2 \theta_{I} \sin \phi$		

Angular distribution

$$
\frac{\mathrm{d}^{4} \Gamma\left[B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right]}{\mathrm{d} \cos \theta_{l} \mathrm{~d} \cos \theta_{K} \mathrm{~d} \phi \mathrm{~d} q^{2}}=\frac{9}{32 \pi} \sum_{i} J_{i} f_{i}(\Omega)
$$

i	J_{i}	f_{i}		
9	$\operatorname{Im}\left(\mathcal{A}_{\\|}^{\mathrm{L} *} \mathcal{A}_{\perp}^{\mathrm{L}}+\mathcal{A}_{\\|}^{\mathrm{R} *} \mathcal{A}_{\perp}^{\mathrm{R}}\right)$	$\sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi$		
10	$\frac{1}{3}\left[\left\|\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\right\|^{2}\right]$	1		
11	$\sqrt{\frac{4}{3}} \operatorname{Re}\left(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{0}^{\mathrm{L} *}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{0}^{\mathrm{R} *}\right)$	$\cos \theta_{K}$		
12	$-\frac{1}{3}\left[\left\|\mathcal{A}_{\mathrm{S}}^{\mathrm{L}}\right\|^{2}+\left\|\mathcal{A}_{\mathrm{S}}^{\mathrm{R}}\right\|^{2}\right]$	$\cos 2 \theta_{l}$		
13	$-\sqrt{\frac{4}{3}} \operatorname{Re}\left(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{0}^{\mathrm{L} *}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{0}^{\mathrm{R} *}\right)$	$\cos \theta_{K} \cos 2 \theta_{l}$		
14	$\sqrt{\frac{2}{3}} \operatorname{Re}\left(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\\|}^{\mathrm{L} *}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\\|}^{\mathrm{R} *}\right)$	$\sin \theta_{K} \sin 2 \theta_{l} \cos \phi$		
15	$\sqrt{\frac{8}{3}} \operatorname{Re}\left(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L} *}-\mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R} *}\right)$	$\sin \theta_{K} \sin \theta_{l} \cos \phi$		
16	$\sqrt{\frac{8}{3}} \operatorname{Im}\left(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\\|}^{\mathrm{L} *}-\mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R} *}\right)$	$\sin \theta_{K} \sin \theta_{l} \sin \phi$		
17	$\sqrt{\frac{2}{3}} \operatorname{Im}\left(\mathcal{A}_{\mathrm{S}}^{\mathrm{L}} \mathcal{A}_{\perp}^{\mathrm{L} *}+\mathcal{A}_{\mathrm{S}}^{\mathrm{R}} \mathcal{A}_{\perp}^{\mathrm{R} *}\right)$	$\sin \theta_{K} \sin 2 \theta_{l} \sin \phi$		

Acceptance

- The angular and q^{2} distributions are distorted due to selection cuts, reconstruction and detector effects.
- Take this into account by computing an acceptance function, modelled as the sum

$$
\varepsilon\left(\cos \theta_{l}, \cos \theta_{K}, \phi, q^{2}\right)=\sum_{i j m n} c_{i j m n} L_{i}\left(\cos \theta_{l}\right) L_{j}\left(\cos \theta_{K}\right) L_{m}(\phi) L_{n}\left(q^{2}\right),
$$

where L_{a} are Legendre polynomials of order a and $c_{i j m n}$ are coefficients obtained via method of moments.

- Use BDTs to determine the goodness-of-fit of the acceptance function.

Acceptance goodness-of-fit

- Example goodness of fit plots shown below.
- Blue: expected distribution from statistical fluctuations
- Red: comparison of MC/fit
- Left: bad fit (p-value $=0 \%$); right: good fit (p-value $=100 \%$)
$O(\mathrm{ctl})=3, \mathrm{O}(\mathrm{ctk})=6, \mathrm{O}(\mathrm{phi})=6, \mathrm{O}(\mathrm{q} 2)=4, \mathrm{O}(\mathrm{mkpi})=2$

$O(\mathrm{ctl})=4, O(\mathrm{ctk})=6, O(\mathrm{phi})=6, O(\mathrm{q} 2)=4, O(\mathrm{mkpi})=2$

- Previous generations had a systematic uncertainty in the required polynomial orders. With this goodness-of-fit test, one can determine most suitable orders and remove the systematic.

Symmetries of the 4D angular distribution

- The 4D angular distribution obeys the symmetry $n_{i} \rightarrow n_{i}^{\prime}=U n_{i}$, where
- $n_{i}=n_{\|}, n_{\perp}, n_{0}, n_{00}$ are complex amplitude vectors, e.g. $n_{0}=\binom{\mathcal{A}_{0}^{L}}{\mathcal{A}_{0}^{R *}}$
- $U=\left(\begin{array}{cc}e^{i \phi_{L}} & 0 \\ 0 & e^{-i \phi_{R}}\end{array}\right)\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{cc}\cosh i \eta & -\sinh i \eta \\ -\sinh i \eta & \cosh i \eta\end{array}\right)$
- Thus the number of amplitudes (16) is greater then the number of degrees of freedom ($16-4=12$).
- Thus apply a basis-fixing condition where $\operatorname{Im}\left(\mathcal{A}_{\perp}^{R}\right)=\operatorname{Im}\left(\mathcal{A}_{0}^{L}\right)=\operatorname{Re}\left(\mathcal{A}_{0}^{R}\right)=\operatorname{Im}\left(\mathcal{A}_{0}^{R}\right)=0$.
- Obtain the angles which satisfies the transformation from the SM basis to the new basis.
- Find the new basis by transforming all amplitude vectors according to the angles obtained.

Mass fit and background

- Parameterise the B mass lineshape as a double-sided Crystal Ball function, $P_{B}=f_{\text {core }} P_{C B}\left(\mu, \sigma_{1}, \alpha_{1}, n_{1}\right)+\left(1-f_{\text {core }}\right) P_{C B}\left(\mu, \sigma_{2}, \alpha_{2}, n_{2}\right)$
- Add in a second signal component due to the B_{s}^{0} with a fixed shift of the mean μ and fixed relative yield.
- Describe the background in the B mass by an exponential distribution.
- The background in the angles and q^{2} are described by Chebyshev polynomials with maximum order $=2$.

Control mode fits - $B^{0} \rightarrow K^{* 0} J / \psi$ (Run 1)

■ Note: large pulls at low $\cos \theta_{K}$ are due to $J / \psi \pi$ exotic states.

Example projections in the interresonance region

Example projections from a fit to a pseudoexperiment.

