

Jet Substructure in Boosted $t\bar{t}$ with ATLAS

Adam Rennie on behalf of the analysis team 6th April, 2022

IOP HEPP & APP 2022, RAL

Measurement of large-R jet substructure in boosted $t\bar{t}$ events

Craig Buttar, Federica Fabbri, **Adam Rennie**, Dwayne Spiteri University of Glasgow

> Christopher Garner, Pekka Sinervo University of Toronto

- Although the kinematics of a jet may be of interest, the distribution of a jet's constituents also contain much information
- In the case of a boosted top quark decaying hadronically, its decay products will be highly collimated and can be reconstructed as a single large-*R* jet
- This jet is expected to have a distinct *three-pronged* structure corresponding to the small-*R* jets from the decay products

- The substructure of a jet provides valuable information on its origin
- Substructure is used extensively for *tagging*, which is ubiquitous in experimental HEP analysis
- There is significant mismodelling of substructure in many cases
- Many searches for new physics expect these sorts of signatures, with highly-boosted massive objects
- Can serve as a probe for QCD calculations

- There are many substructure observables which have been developed to probe various aspects of a jet's underlying substructure.
- These look at the constituents which make up a jet in order to characterise the radiation patterns within.
- Some basic examples would be the number of subjets or the number of constituents within a jet.

- Measurement of jet substructure observables in boosted $t\bar{t}$ using ATLAS' full Run-2 dataset
- Both the lepton + jets and all-hadronic $t\bar{t}$ decay topologies are measured
- Results will be unfolded back to particle-level
- Results will be compared against a variety of MC predictions as well as variations on the nominal prediction

Complete selection details in backup, with some important highlights:

Lepton + jets

- R = 1.0 large-R jet reclustered from R = 0.4 small-R jets with a p_T > 350 GeV
- Candidate top-jet to have 110 GeV < m < 230 GeV
- One lepton with $p_{\rm T} > 27~{\rm GeV}$
- $m_{\ell b} < 120 \text{ GeV}$

All-hadronic

- Two R = 1.0 large-Rtopocluster jets with $p_{\rm T} > 350$ GeV, one with $p_{\rm T} > 500$ GeV
 - *b*-tagged jet required inside both large-*R* jets
 - DNN top-tag required on non-probe large-*R* jet

Selecting substructure observables

- A long list of possible substructure observables was drawn up, with criteria for trimming that into a final set to be measured:
 - Described poorly by the nominal prediction
 - Sensitive to variations in NLO+PS predictions
 - Useful in recent tagging algorithms
 - Good resolution
 - Minimally correlated with other observables

width	1.859	2.072	4.962	9.942	19.373		
thrust	2.229	1.661	6.391	7.532	14.679		10 ³
oultiplipity	13.574	31,941	36.633	12.033	26.197	-	10
nuniplicity	127.107	333.808	1042.27	13.462	24.375		
	2.733	1.828	4.045	9.118	17.947		
.0F4, p=0	253.053	449.731	1505.30	7.013	17.007		
	0.109	20.020	150.022	7.007	17.007		
.01 0, p=0	01.030	6.000	77.000	10.015	29.510		
	5.011	0.000	201 665	4.007	20.019		
.01 2, p=0	0.715	51.014	10 505	10.100	10.005		
	4 205	4.90	25 524	4 165	P 202		
ECE1	9.205	4.00	30.004	9.45	6.674		102
contricity	15.075	12.062	4 402		0.074		10
dispersion	24,900	51.002	101 070		4 192	-	
D 8-0	4 666	5 069	25.016	E 21	0.025		
^{3, p=0}	26.595	45.052	270 517	17.207	24 207		
D. 6=0	16.871	13 357	47 759	0.879	1 767		
D ₂ , p=0	12.020	15 702	19,009	6 149	11.412	-	
d.2	16.027	28 367	43.872	9.495	20.962		
d23	2.538	2 324	13.59	8 295	17.406	-	
D2	12.016	15.276	17 227	5 889	11 108		
C. β≡δ	90.474	144 055	458 305	6.058	11.831		4.0
-3, F C.	24.33	53 295	280 832	6.416	12 377		10
C. B=0	79.872	131.868	437 024	5 853	11 498		
² , ^p C.	9.885	11.637	31 747	1.685	3 796	-	
τ_4^2	220.055	512,775	1368.45	7.366	13.815	-	
τ.,	27 772	15 798	90.949	5 824	13 193	_	
Ť,	161.227	334.676	1001.1	2.624	4.632	-	
τ.,,	30,101	50.32	290.885	19.528	40.903		
T21	52.087	119.242	280.024	15,292	29.265	-	
Ť,	39.094	54.019	148,114	11.158	24,923		
τ.	18.34	33.559	44,193	2.532	5.028		
τ,	6.355	6.395	46.688	24.265	50.197		1
FSR FSR Dh7				Rad	Rad iation_do	iatio Wn	n_up

ATLAS Work in progress

Jet Substructure in Boosted $t\bar{t}$ with ATLAS

e

 χ^2/NDF

Observable	Description
N-subjettiness	Probes <i>N</i> -pronged structure. Useful in tag- ging, sensitive to variations in MC prediction. Measured : τ_3 , τ_{32} , τ_{21}
Energy Correlation Func- tions (ECF)	Probes <i>N</i> -pronged structure. Useful in tag- ging, sensitive to variations in MC prediction. Measured : ECF2, D_2 , C_3 .
Generalised Angularities	Can be configured to probe different aspects of a jet's structure. Sensitive to variations in MC prediction. Measured : Les Houches Angularity, p_T dispersion.

Unfolding strategy

- Distributions unfolded to particle-level using Iterative Bayesian Unfolding (IBU)
- The number of iterations of the unfolding mechanism is optimised for each observable between 4 and 10 iterations
- The procedure is the validated by:
 - Closure test: verifying that the unfolding can recover the underlying physics against statistical fluctuations
 - Pull test: checking for bias in measured bin values at particle-level and that errors are estimated correctly
 - Stress test: evaluate bias from regularization technique

Particle-level results

 $\tau_{\rm 32}$ exhibits sensitivity to variations in the MC predictions as well as variations of the FSR

Lepton + jets

All-hadronic

Conclusions

- Analysis currently undergoing ATLAS review, with paper draft prepared
- Measurements presented in both lepton+jets and all-hadronic channels
- Results are compared to various MC generators and variations on the nominal MC
- With respect to previous ATLAS measurement:
 - Full Run-2 dataset analysed
 - Additional observables measured
 - Reduced uncertainties
 - All-hadronic channel also measured

Backup

Lepton + Jets Selection

Objects	Detector-level Selection			
Leptons	$\begin{array}{l} \textbf{Electrons} \\ p_{\mathrm{T}} > 27 \; \mathrm{GeV} \\ \eta < 1.37 \\ 1.52 < \eta < 2.47 \\ d_0/\sigma d_0 < 5 \\ \Delta z_0 < 0.5 \; \mathrm{mm} \end{array}$	Muons $p_{\rm T} > 27 {\rm GeV}$ $ \eta < 2.47$ $ d_0/\sigma d_0 < 3$ $ \Delta z_0 < 0.5 {\rm mm}$		
$E_{\mathrm{T}}^{\mathrm{miss}}, m_{\mathrm{T}}^{W}$	$ \begin{split} E_{\rm T}^{\rm miss} &> 20~{\rm GeV} \\ E_{\rm T}^{\rm miss} &+ m_{\rm T}^W > 60~{\rm GeV} \end{split} $			
Large-R reclustered iets	$\frac{110 \text{ GeV} < m_{\text{jet}} < 230 \text{ GeV}}{p_{\text{T}} > 350 \text{ GeV}}$ $\Delta R(\ell, \text{hadronic top}) \ge 1.0$ $N_{\text{constituents}} > 1$			
EMPFlow small- <i>R</i> jets	$\begin{split} N_{\text{jets}} &> 1(\text{implicitly})\\ p_{\text{T}} &> 25 \text{ GeV}\\ \eta &< 2.5\\ \text{JVT} &> 0.5 \text{ (if } p_{\text{T}} < 60 \text{ GeV}) \end{split}$			
b-tagging	DL1r at 77% WP At least one <i>b</i> -tagged small- <i>R</i> jet At least one $\Delta R(b$ -jet, $\ell) \le 1.5$ ΔR (leptonic <i>b</i> -jet, top-jet) ≥ 1.5			
m _{ℓb}	$m_{\ell b}$ < 120GeV			

ATLAS Work in progress

- No *b*-matching means not biasing the substructure
- Higher efficiency than b-matching at high-p_T, double-ratio:

$$R = \frac{(\frac{\text{Signal}}{\text{Total}})_{\text{After Cut}}}{(\frac{\text{Signal}}{\text{Total}})_{\text{Before Cut}}}$$

• Combined with mass cut on jet

 This cut not only reduces the fraction of events which are background, but the proportion of those events which are single top, a process carrying a large uncertainty.

All-Hadronic Selection

Objects		Detector-level Selection			
e-Selection	Leptons	0 Electrons with $E_T > 25 \text{ GeV}$ $ \eta < 1.37$ $1.52 < \eta < 2.47$	0 Muons with $p_T > 25 \text{ GeV}$ $ \eta < 2.5$		
Pr	Large-R jets	122.5 GeV $< m_{jet} < 222.5$ GeV 1 with $p_T > 500$ GeV 2 with $p_T > 350$ GeV $ \eta < 2.0$			
Selection	<i>b</i> -tagging	DL1r at 70% WP $\geq 2 b$ -tagged VR track jets $\Delta R(b$ -jet, $large - R - jet) \leq 1.0$ (for 2 highest- p_T large-R jets)			
Signal 2	Top-Tagging	DNN top-tag on non-probe large- <i>R</i> jet (JSSWTopTaggerDNN_Contained80)			

ATLAS Work in progress

Substructure Observables: Generalised Angularities

• For a hadron collider, the generalised angularities can be defined:

$$\lambda_{\beta}^{\kappa} = \sum_{i \in J} z_{i}^{\kappa} \left(\frac{\Delta R(i, \hat{n})}{R}\right)^{\beta}$$

- z_i^{κ} the fraction of the jet's p_{T} carried by the i^{th} constituent
- \hat{n} is the jet's axis
- ΔR the distance in $\eta \phi$ space
- R the jet radius parameter
- κ and β are p_{T} and angular weighting terms, respectively

- Measured in the analysis are:
 - The Les Houches Angularity, λ¹_{0.5}, which provides a measure of the width of a jet.
 - The scaled *p*_T dispersion,

$$\lambda_0^{2*} = p_T^{d,*} = \sqrt{(p_T^d - \frac{1}{N})\frac{N}{N-1}}$$

 p_T^d is the standard p_T dispersion (λ_0^2) and N is the particle multiplicity. In this way, $\lambda_0^{2*} \rightarrow 0$ for equally distributed constituents and $\lambda_0^{2*} \rightarrow 1$ when most of the momentum is carried by a single particle.

Substructure Observables: Energy Correlation Functions

• For a hadron collider, the Energy Correlation Functions (ECFs) provide a way to probe *N*-pronged structure in a jet and may be defined:

$$\mathsf{ECF}(N,\beta) = \sum_{i_1 < i_2 < \dots < i_N \in J} \left(\prod_{a=1}^N p_{T,i_a} \right) \left(\prod_{b=1}^{N-1} \prod_{c=b+1}^N \Delta R(i_b,i_c) \right)^{\beta}$$

- The sum runs over all constituents in the jet
- *i* always denoting a constituent of the jet
- *N* the number of prongs
- ΔR is the distance in $\eta \phi$ space between pairs of constituents with combinations determined by the product terms
- β is an angular weighting term

0

- Measured in the analysis are:
 - $D_2^{(\beta)} = \frac{\text{ECF}(3,\beta) \text{ECF}(1,\beta)^3}{\text{ECF}(2,\beta)^3}$: useful for identifying two-pronged structure, with lower values being more consistent with that structure.
 - $C_3^{(\beta)} = \frac{\text{ECF}(4,\beta) \text{ECF}(2,\beta)}{\text{ECF}(3,\beta)^2}$: useful for identifying three-pronged structure, with lower values being more consistent with that structure.

• ECF2^{NORM}(
$$\beta$$
) = $\frac{ECF2(\beta)}{ECF1^2}$: The normalised version of ECF2.

• For all of the above, β is set to one.

Substructure Observables: N-Subjettiness

• For a hadron collider, the *N*-subjettiness variables provide a way to probe *N*-pronged structure in a jet and may be defined:

$$\tau_N = \frac{1}{d_0} \sum_k p_{t,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\},$$
$$d_0 = \sum_k p_{t,k} R_0.$$

- Constituents of the jet are reclustered using the exclusive k_t algorithm
- Clustering continues until N subjets are returned
- Calculation of τ_N then runs over the constituents of the jet
- $p_{t,k}$ the p_T of the k^{th} constituent
- $\Delta R_{N,k}$ is the distance in $\eta \phi$ space between the axis of the Nth subjet and the kth constituent
- R₀ is the jet radius parameter

- Measured in the analysis are:
 - τ_3 : tends towards lower values when structure is consistent with 3 or fewer prongs
 - $\tau_{32} \equiv \frac{\tau_3}{\tau_2}$: tends to lower values when consistent with 3-pronged substructure
 - $\tau_{21} \equiv \frac{\tau_2}{\tau_1}$: tends to lower values when consistent with 2-pronged substructure

Systematics

Lepton + jets

All-hadronic

D_2 exhibits sensitivity to variations in the MC predictions

Lepton + jets

All-hadronic