Four Top Production at CMS

Nicolas Stylianou on behalf of the CMS collaboration

IOP HEPP & APP Annual Conference 2022

N. Stylianou (nikos.stylianou@cern.ch)

1/30

N. Stylianou (nikos.stylianou@cern.ch)

IOP HEPP & APP April 2022

2/30

Introduction - Top Processes

A very rare Standard Model process $\sim 12^{+2.2}_{-2.5}$ fb at NLO QCD+Electroweak at 13 TeV (arXiv:1711.02116)

-

< A ▶

Introduction

Top Quark

- Most massive elementary particle to date
 - $\bullet~$ At \sim 40 times the mass of the b-quark
 - Top mass $m_t \sim 173~{
 m GeV/c^2}$
- Only quark to decay before hadronization

- Identification via basic reconstruction is difficult due to background processes
- Needs taggers for resolved and boosted scenarios

Introduction

Why the Top Quark?

- Standard model predicts top kinematics
- Top physics \rightarrow SM cross check
- Deviations are signs of new physics
- This new physics is at large mass scales \rightarrow making it a good candidate to fix the holes in the SM

-

Introduction - Jump A Few Steps Forward

Standard Model four-top Production Methods

Motivation

- Rare Standard Model process
 - Interesting as a SM-QCD process
 - Includes both 3 point gluon interactions and quark-gluon interaction
 - Provides constraints to the top-Yukawa coupling (y_t)
 - Indicates H-boson must interact with top quarks
- Sensitive to BSM physics

- Leading via QCD $\mathcal{O}(\alpha_s^4)$
- Smaller contributions via Higgs and electroweak $\mathcal{O}(\alpha_s^2 y_t^2), \ \mathcal{O}(\alpha_s^2 \alpha^2)$
- Predicted σSM_{tītī} given at NLO for both QCD and EWK interactions

6/30

Introduction

Beyond Standard Model four-top Production Methods

Motivation

- BSM physics:
 - Two-Higgs-Doublet-Model(2HDM): heavy scalar or pseudo-scalar Higgs(H/A) [1]
 - Simplified models of dark matter(DM)
 - Off-shell particles with $m < m_t$
 - Higgs-boson [3] and Top-quark compositeness [4]
 - SUSY (eg. gluino-pair)
 - Extra dimensions (eg. [5,6])
- Interpretation with SM Effective Field Theories (SM-EFTs)

A few possible diagrams are shown, which represent:

- Rare SUSY example,
- Intermediate scalar and
- Interaction in a SM-EFT

all producing four-tops

Introduction

Possible final states

Combination of all final states will prove to yield the best results, but first must be treated separately. Each final state has dominant backgrounds as:

- 0 μ or e: multijet QCD (difficult as there more backgrounds)
- 1 μ or e: $t\overline{t} + bb$, $t\overline{t} + cc$
- 2 μ or e:
 - Same-charge: $t\bar{t}W/Z/H$, dibosons
 - Opposite-charge: $t\overline{t} + b\overline{b}$, $t\overline{t} + c\overline{c}$
- 3 μ or e: $t\bar{t}W/Z/H$, dibosons
- Contain τ : Taus have a complicated signature, so we focus on electrons and muons

8/30

The CMS detector and the Large Hadron Collider

The LHC:

- Accelerates two beams of protons in opposite directions
- Guides beams to be collided at the interaction points
- Designed to have a $14\,{\rm TeV}$ centre-of-mass collision ${\rm energy}(\sqrt{s})$

CMS:

- Several sub-detectors essential for four-tops analysis
- During RunII it collected 137 fb⁻¹ of data (13 TeV) which is important for rare searches like four-top
- Currently one of the only options available for the four-tops search, the High Energy Frontier experiments (such as ATLAS and CMS)

< ロ > < 同 > < 回 > < 回 >

Overview Four-Top Analyses

- "Same-Sign-Dilepton + Multilepton (137 fb^{-1}) " (arXiv:1908.06463)
- "1 Lepton + Opposite-Sign-Dilepton (36 fb⁻¹)"(arXiv:1906.02805)
- "Projections of sensitivities for tttt production at HL-LHC and HE-LHC"

| 4 同 ト 4 ヨ ト 4 ヨ ト

- Final state signature 4 b-jets and $(8 2 \times N_{leptons}^{expected})$ jets
- Four-top signal will be at high multiplicities, where signal over background is largest
- Use low multiplicity regions as control, because they have no signal or are depleted of it.

ъ.

Strategy by analysis dominated by tt+bb/cc

- MC based simultaneous fit of a boosted decision tree, using MC shapes including full theory uncertainties
 - Resolved top-tagging (MVA based)
 - BDT trained on kinematic, b-tagging and resolved top-tagging information.
 - BDT for signal and background discrimination yields discriminant D^{SL/DL}_{tītī}.
 - Lower jet an tag-jet multiplicity used to constrain large systematic uncertainties during simultaneous fit
 - Strategy is similar to simultaneous fits used for $t\bar{t}$ cross section

Strategy by analysis dominated by tt+bb/cc

- Major Uncertainty Sources:
 - tt+bb(cc) via gluon splitting
 - $\bullet \ \ {\sf Renormalisation} + {\sf factorisation} \ {\sf scales} \\$
 - Modelling of additional jet radiation in MC
- Fit model consistent with the observed data
- This method is expected to gain better precision with larger datasets when there are more statistics in control regions

Results by analysis dominated by tt+bb/cc

- Even with few $t\bar{t}t\bar{t}$ candidate events \rightarrow a expected limit of $+20^{+10}_{-6}~{\rm fb},$ which is consistent with SM
- Gives a grand 2016 combination with $\sigma_{t\bar{t}t\bar{t}} = 13^{+11}_{-9}$ fb at 1.1(1.4)s.d. expected(observed) significance.

Channel	Expected limit μ	Observed limit μ	Expected limit	Observed limit	Best fit μ	Best fit $\sigma_{t\bar{t}t\bar{t}}$
(36 fb ⁻¹)			(fb)	(fb)		(fb)
1L+OS2L	$5.7^{+2.9}_{-1.8}$	5.2	52^{+26}_{-17}	48	0.0 ^{+2.2}	0 ²⁰
Combination	$2.2^{+1.1}_{-0.7}$	3.6	20^{+10}_{-6}	33	$1.4^{+1.2}_{-1.0}$	13^{+11}_{-9}

Expected and observed 95% CL upper limits on SM tttt production as a multiple of σ_{SM} . The values quoted for the uncertainties in the expected limits indicate the regions containing 68% of the distribution of limits expected under the background-only hypothesis. The expected upper limits are calculated assuming that the data are distributed according to the prediction of the background-only model corresponding to the scenario with signal strength modifier value $\mu = 0$.

Maximum-likelihood signal strength, μ , and cross section estimates. Where uncertainties are 1 s.d. values and include all statistical and systematic uncertainties.

Strategy by analysis dominated by $tt{+}W/Z$

On the right you see the regions for the same-sign-dilepton/multi-lepton analysis.

• Dominant backgrounds $t\bar{t}W^{\pm}$ and $t\bar{t}Z/\gamma$, which have dedicated control regions to place constraints on the normalisation of the respective processes

Other less dominant background processes:

- $t\bar{t}H$ (mainly by the $H \rightarrow WW$)
- Misidentification backgrounds
 - Charge misidentified prompt lepton
 - Single lepton with additional non-prompt lepton

Strategy by analysis dominated by $tt{+}W/Z$

- BDT used to get optimal sensitivity
- Substantial improvement compared to the *cut-and-count* approach
- Uses a simultaneous fit in multiple categories.
- Dominant uncertainties:
 - Modelling SM backgrounds
 - Data-driven charge misidentification estimates
 - Knowledge heavy flavour $t\overline{t} + bb(cc)$

The expected SM $t\bar{t}t\bar{t}$ signal is normalised to its predicted $\sigma_{t\bar{t}t\bar{t}}$

Results by analysis dominated by $tt{+}W/Z$

- The values and uncertainties of nuisance parameters are consistent before and after fit
- But $t\bar{t}W$ and $t\bar{t}Z$ normalisation are scaled by 1.3 ± 0.2 by fit, which is in agreement of measurements of these processes by ATLAS and CMS.

Results by analysis dominated by tt+W/Z

- Significance of BDT analysis is 2.6(2.7) s.d. observed(expected) over background-only hypothesis.
 - $\Delta \sigma_{t\bar{t}t\bar{t}}/\sigma_{t\bar{t}t\bar{t}} \sim 45\%$ uncertainty
 - Agrees well within uncerainties with NLO QCD+EWK value of $\sigma_{t\bar{t}t\bar{t}} = 12.0^{+2.2}_{-2.5}$ fb
 - Observed 95% CL upper limit on $\sigma_{t\bar{t}t\bar{t}}$ is 22.5 fb in BDT analyses
 - The corresponding expected upper limits assuming no SM $t\bar{t}t\bar{t}$, are $8.5^{+3.9}_{2.6}$ fb

= ~~~~

Interpretations by analysis dominated by $tt{+}W/Z$

Previously we had mentioned the top-Yukawa coupling. Well, here it is.

- $\sim 20\%$ of the $t\bar{t}t\bar{t}$ LO Feynman diagrams contain H
- y_t substantial impact on $\sigma_{t\bar{t}t\bar{t}}$
- $\sigma_{t\bar{t}t\bar{t}} = 12.6^{+5.8}_{-5.2}$ fb measurement used according to Cao et al.(arXiv:1602.01934)
- ttH is included in background so $\sigma_{t\bar{t}t\bar{t}}$ depends on $|y_t/y_t^{SM}|$
 - Most conservative scenario $|y_t/y_t^{SM}| < 1.7$ at 95% CL.

Interpretations by analysis dominated by $tt{+}W/Z$

- - Competitive limits at low masses.
 - Complementary to high mass $t\bar{t}$ resonance searches
 - Competitive to direct searches sensitive to SM interference/spectrum modifications.
- Limits on production new particles with $m > 2m_t$, like heavy scalar (H) and pseudoscalar (A), interpreted in terms of 2HDM parameters or in the framework of simplified models of dark matter (DM, m_χ).

Beyond RunII

- CMS projection, a scale-up of the 2016 Same-Sign-2L/3L counting experiment analysis for the HL-LHC and HE-LHC
 - Includes EFT projections and various scenarios regarding systematic uncertainties also expected cross section uncertainties at HE-LHC
 - 1% exp uncertainty on cross-section with full HE-LHC sample
- Conclusion:
 - Multiple evaluation scenarios for systematic uncertainties
 - Around 300 ${\rm fb}^{-1}$ of HL-LHC data at $\sqrt{s}=14~{\rm TeV}$ in single channel
 - Given no systematic uncertainties: evidence for $t\bar{t}t\bar{t}$ (i.e., 5 s.d. significance) possible
 - Given systematic uncertainties: 3 s.d. significance for $t\bar{t}t\bar{t}$ possible
 - For larger datasets at HL-LHC all scenarios dominated by systematic uncertainties.

イロト イポト イラト イラト

Summary

Interpretations

- With large LHC Run 2 dataset, CMS has 2.6(2.7) s.d. excess, and measurement of $\Delta \sigma_{t\bar{t}t\bar{t}}/\sigma_{t\bar{t}t\bar{t}} \sim 45\%$ means CMS can constrain $|y_t/y_t^{SM}| < 1.7$ at 95% CL
- Collaborations are interpreting $\sigma_{t\bar{t}t\bar{t}}$ beyond just the SM value, in EFT and various BSM models.

Future HL-LHC

• Single channel observation possible at 3 standard deviations sensitivity

-

- 4 目 ト 4 日 ト

Near Future

- So we have seen that 3σ possible at 300 $\rm fb^{-1}$ integrated luminosity at $\sqrt{s}=14~\rm TeV$ for a single channel
- Imagine now that we have 137 ${\rm ~fb^{-1}}$ at $\sqrt{s}=13~{\rm TeV}$ (which RunII has) and that we merge all the channels. Well then, things may get interesting.
- Alas, we cannot disclose anything yet and will leave this as something for everyone to look forward to.

THANKS FOR LISTENING

э

・ロト ・四ト ・ヨト ・ヨト

Backup

Results by analysis dominated by tt+bb/cc

• The EFT Lagrangian:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \dots$$
$$\mathcal{L}^{(d)} = \frac{1}{\Lambda^{d-4}} \sum_{k} C_{k}^{(d-4)} \mathcal{O}_{k}^{(d-4)}$$

- $\mathcal{O}_k^{(n)}$ and $\mathcal{C}_k^{(n)}$ are the dimension-n composite operators and their coupling parameters, respectively.
- Λ related to mass scale of BSM states
- Lowest dimension EFT operators contributing to $pp \rightarrow t\bar{t}t\bar{t}$ have d=6 (operators shown in table)

EFT interpretation

- Cross section limits interpreted in EFT for separate Wilson parameters including marginalisation over all other physical free parameter values.
 - EFT basis recommended by TOP-LHCWG (arxiv:1802.07237)

	Expected C_k/Λ^2 ${ m TeV}^{-2}$	Observed TeV^{-2}
$ \begin{array}{c} \mathcal{O}_{tt}^1 \\ \mathcal{O}_{QQ}^1 \\ \mathcal{O}_{Qt}^1 \\ \mathcal{O}_{Qt}^8 \\ \mathcal{O}_{Qt}^8 \end{array} $	[-2.0, 1.9] [-2.0, 1.9] [-3.4, 3.7] [-7.4, 6.3]	[-2.2, 2.1] [-2.2, 2.0] [-3.7, 3.5] [-8.0, 6.8]

Results by analysis dominated by tt+bb/cc

Assume coupling predominantly to the left-handed third generation quark doublet (Q_L) and the right-handed top quark singlet, only the following operators contribute significantly to the $t\bar{t}t\bar{t}$:

- $\mathcal{O}_{tt}^1 = (\overline{t}_R \gamma^\mu t_R) (\overline{t}_R \gamma_\mu t_R)$
- $\mathcal{O}_{QQ}^1 = (\bar{Q}_L \gamma^\mu Q_L) (\bar{Q}_L \gamma_\mu Q_L)$

•
$$\mathcal{O}_{Qt}^1 = (\bar{Q}_L \gamma^\mu Q_L)(\bar{t}_R \gamma_\mu t_R)$$

•
$$\mathcal{O}_{Qt}^8 = (\bar{Q}_L \gamma^\mu T^A Q_L) (\bar{t}_R \gamma_\mu T^A t_R)$$

 \mathcal{O}_{Qt}^1 and \mathcal{O}_{Qt}^8 have identical terms and become identical if differences (terms) are suppressed by PDFs, therefore the two operators have strong correlation.

$$\sigma_{t\bar{t}t\bar{t}\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \vec{C}^{\,T} \sigma^{(1)} + \frac{1}{\Lambda^4} \vec{C}^{\,T} \sigma^{(1)} \vec{C}$$

In order to find $\vec{\sigma}^{(1)}$ and $\sigma^{(2)}$, a system of linear equations has to be solved. It is obtained by substituting linearly-independent vectors C into the equation above. In the cross section calculation, the EFT interactions are implemented in the FEYNRULES package and interfaced with MADGRAPH5_aMC@NLO.

EFT interpretation

cross section limits interpreted in EFT for separate Wilson parameters where only one selected operator has a non-vanishing contribution.

	Exp. C_k/Λ^2	Obs.
	${ m TeV^{-2}}$	${ m TeV^{-2}}$
\mathcal{O}_{tt}^1	[-2.0, 1.8]	[-2.1, 2.0]
\mathcal{O}^{1}_{QQ}	[-2.0, 1.8]	[-2.2, 2.0]
$\mathcal{O}_{Qt}^{\hat{1}}$	[-3.3, 3.2]	[-3.5, 3.5]
$\mathcal{O}_{Qt}^{\vec{8}}$	[-7.3, 6.1]	[-7.9, 6.6]
4.		

- Know very little about Higgs boson width Γ_H and its coupling to SM fermions
- Γ_H cannot be measured directly from line-shape of Higgs boson resonance.
 - Can be determined through $gg \rightarrow H \rightarrow ZZ$ comparison of production rate at the Higgs resonance from that around it
 - Only upper bounds obtained by CMS and ATLAS
 - y_t , it indicates that H-boson must interact with top guarks
- y_t and Γ_H needed to decipher H-boson properties and enlighten us to BSM.

∃ <\0<</p>

More on Yukawa coupling

- The contribution of \mathcal{M}_H to the $t\bar{t}t\bar{t}$ production cross-section is proportional to y_t^4 , and that enables us to measure y_t through the $t\bar{t}t\bar{t}$ channel.
- $\bullet\,$ QCD and EWK gauge interactions of top quarks \rightarrow well established
- y_t might differ from the SM value.

The cross section of the $t\bar{t}t\bar{t}$ is parameterised as:

$$\sigma(t\bar{t}t\bar{t}) = \sigma(t\bar{t}t\bar{t})_{int} + \sigma(t\bar{t}t\bar{t})_{g+Z/\gamma} + \sigma(t\bar{t}t\bar{t})_H$$

where:

- Interference among the three kinds of Feynman diagrams $\sigma(t\bar{t}t\bar{t})_{int} \propto \mathcal{M}_{g+Z/\gamma}\mathcal{M}_{H}^{\dagger} + \mathcal{M}_{g+Z/\gamma}^{\dagger}\mathcal{M}_{H}$
- $\sigma(t\bar{t}t\bar{t})_{g+Z/\gamma}\propto |\mathcal{M}_g+\mathcal{M}_{Z/\gamma}|^2$
- $\sigma(t\bar{t}t\bar{t})_H\propto |\mathcal{M}_H|^2$

Constraints on $\sigma(t\bar{t}t\bar{t})$ give constraints on y_t

- In the boosted decision tree (BDT) analysis, the CRZ is the only control region, and the remaining events are subdivided into 17 SRs by discretizing the discriminant output of a BDT trained to separate tttt events from the sum of the SM backgrounds.
- The BDT classifier utilizes a gradient boosting algorithm to train 500 trees with a depth of 4 using simulation, and is based on 19 variables.
- The observed and predicted yields in the CRs and SRs are used in a maximum likelihood fit with nuisance parameters to measure $\sigma(pp \rightarrow tttt)$

周 ト イ ヨ ト イ ヨ ト

= 900