

Differential ttZ cross section measurements with ATLAS

Laurynas Mince (University of Glasgow) IOP HEPP & APP Annual Conference 2022 Rutherford Appleton Laboratory, 3-6 April 2022

- Introduction:
 - \rightarrow associated production of a top quark pair and a Z boson.
- Selections:
 - \rightarrow final states of the ttZ system.
- First differential ttZ measurements:
 - \rightarrow iterative Bayesian unfolding,
 - \rightarrow results.
- Refining the ttZ measurements:
 - \rightarrow profile likelihood unfolding,
 - \rightarrow work-in-progress results.

Top quarks + Z boson

The top-quark couplings play an important role in the Standard Model.

Top-quark pair + Z boson:

New physics effects from Beyond the Standard Model theories are expected at a higher energy scale.

Laurynas Mince

Signatures of ttZ

Final states with three (3 ℓ) or four (4 ℓ) isolated leptons (e or μ) are most sensitive.

3*ℓ* channel:

- 3 isolated leptons,
- jets and b-jets.

4^e channel:

- 4 isolated leptons,
- jets and b-jets,
- MET.

The unfolding problem is solved using

the Improved Iterative Bayesian Unfolding by G. D'Agostini.

Laurynas Mince

Unfolded pT(Z) distribution:

Breakdown of uncertainties:

- 1. Statistical uncertainty,
- 2. Signal modelling,
- 3. Jet flavour-tagging.

Combine 3L and 4L regions into one:

Refine the measurements

The profile likelihood unfolding aims to improve three main areas of the ttZ differential measurements with IBU.

- The previous ttZ analysis was **dominated by the statistical uncertainty**:
 - Straightforward to use multiple signal regions.
- Combination of the two channels, 3L and 4L:
 - Fully exploit the different purities of the two channels.
- Our signal is not pure:
 - Direct use of control regions.

Eur. Phys. J. C 81 (2021) 737

Profile Likelihood Unfolding

The unfolding problem is transformed into a maximum likelihood fit.

- Fold the truth-level distribution bin-by-bin via a response matrix:
 - \rightarrow one "sub-sample" for each truth bin, S_{ir} \rightarrow one Parameter of Interest, POI, per truth bin.
- Add background reco distributions.
- Fit the sum of the folded distributions:
 - \rightarrow normalisation of each POI.

Laurynas Mince

Signal regions

Signal regions are defined using Deep Neural Network cuts

\rightarrow Improved acceptance.

Laurynas Mince

Control regions

Significant contribution of fake leptons in the signal regions: \rightarrow Estimate using the semi-data-driven Fake Factor method.

PLU results

The unfolding method passes validation tests and shows promising results.

Laurynas Mince

Reasonable improvements are expected in the refined measurements.

Summary

Refined measurements of the differential ttZ cross sections with ATLAS are underway \rightarrow improvements are expected.

- Reduced statistical uncertainty:
 - DNN cuts improve the event selection,
 - Profile likelihood unfolding allows multiple signal regions.
- Control regions are directly included:
 - Fake lepton backgrounds are estimated using a semi-data-driven method,
 - WZ+b background is estimated from data.
- Straightforward combination of the 3L and 4L channels:
 - Fully exploit the different purities of the two channels.

Backup