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Introduction

High pile up HL-LHC

Finding primary vertex essential for 
reducing impact of pile up on L1 
triggering

~ 10 cm

○ HL-LHC, increased number of simultaneous 

proton-proton interactions per bunch crossing. Good 

for rare physics searches, bad for current era 

triggering

○ Tracks for the first time at L1 trigger

○ Tracks to locate primary vertex (the proton-proton 

collision with the highest ∑pT
2)

○ Associate tracks and other trigger objects to vertex, 

reducing impact of pileup on downstream algorithms 

(e.g. PUPPI) -> maintain sensitivity 
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Baseline Vertex Finding Chain
Produces tracks > 2 GeV, 
~100s per event with PU200

3

Track Finding 
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Baseline Vertex Finding Chain

4

Track Quality

Produces tracks > 2 GeV, 
~100s per event with PU200

Based on χ2 parameters from 
track finding, simple cuts

Track Finding 
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Baseline Vertex Finding Chain

5

Vertex Finding

Track Quality

Produces tracks > 2 GeV, 
~100s per event with PU200

Based on χ2 parameters from 
track finding, simple cuts

FastHisto, histogram all tracks 
in z0 weighted by pT, find 3 
consecutive bins with highest 
pT

Track Finding 
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Baseline Vertex Finding Chain

6

Track to 
Vertex 
Association

Vertex Finding

Track Quality

Produces tracks > 2 GeV, 
~100s per event with PU200

Based on χ2 parameters from 
track finding, simple cuts

FastHisto, histogram all tracks 
in z0 weighted by pT, find 3 
consecutive bins with highest 
pT

Fixed window in z0 or multiple 
windows based on track  η 

Track Finding 
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Baseline Vertex Finding Chain

7

Track ET
Miss 

PF/PUPPI etc.

Track to 
Vertex 
Association

Vertex Finding

Track Quality

Produces tracks > 2 GeV, 
~100s per event with PU200

Based on χ2 parameters from 
track finding, simple cuts

FastHisto, histogram all tracks 
in z0 weighted by pT, find 3 
consecutive bins with highest 
pT

Fixed window in z0 or multiple 
windows based on track  η 

Downstream Algorithms

Track Finding 
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram

End to End Neural Network 

DNN multiple track 
features
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Vertex Finding Concept
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pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram

End to End Neural Network 
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram

End to End Neural Network 

DNN multiple track 
features

Weighted Histogram

Multilayered CNN
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram

End to End Neural Network 

DNN multiple track 
features

Weighted Histogram

Multilayered CNN

Argmax
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram

End to End Neural Network 

DNN multiple track 
features

Weighted Histogram

Multilayered CNN

Argmax

DNN with z0 distance, track 
features and latent features
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Vertex Finding Concept
Baseline 

pT Weighting

3-Bin Convolution

Argmax 

Cut-Based 

Weighted Histogram

End to End Neural Network 
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End to End Neural Networks for Vertex Finding

○ Network trained with 2 part loss function -> Event level 

PV regression, track level PV track classification

○ Simultaneous knowledge of both PV position and 

track to vertex association

○ Robust to changes in track finding

○ Additional vertex quality 

Differentiable
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Performance - Vertex Regression

○ Similar performance in core of residual

○ 55% reduction in tails of residual 

○ Better identification of pileup vertices removing high pT clusters

○ Similar performance with compressed networks

Log ScaleNon-Log 
Scale
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Performance - Track to Vertex Association

○ Improvement in ET
miss calculation, reduction in tails of residual

○ Returns likelihood of track belonging to vertex -> flexible threshold for downstream 

algorithms 

Baseline
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Firmware - Network Compression

Split Model 
into 3 parts ->
Weight
Pattern
Association

Wire up generated HDL 
within existing VHDL 
GTT

hls4ml - JINST 13 P07027 (2018)

Quantisation:
Restrict Bitwidths
Reduce DSP usage

Pruning:
Iteratively Remove Weights
L1 Regularization

VU9P Latency 
(ns)

Initiation 
Interval (ns)

LUTs 
%

DSPs 
%

BRAMs 
%

FFs 
%

NN Weight 28 2.0 0.17 1.89 0.00 0.08

QPNN Weight 14 2.0 0.04 0.00 0.00 0.02

NN Pattern 42 38 2.54 3.74 5.28 3.20

QPNN Pattern 30 26 2.12 0.00 5.28 2.96

NN Assoc. 30 2.0 0.60 6.04 0.00 0.28

QPNN Assoc. 18 2.0 0.13 0.00 0.00 0.06

8 training 
cycles

https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
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Implementation
Track Conversion

Track Distribution

Histogram

3-Bin Window

Maxima Finder

Vertex

Association

○ Take VHDL processing blocks of 
baseline histogramming approach

○ VHDL top entities controlling input 
output signals of networks

○ Targeted ⅓ VU9P running at 360 MHz 
○ Meets timing after running networks 

through Vitis with better pipelining
○ 108 ns total algorithm latency
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Association Network
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Implementation
Track Conversion

Track Distribution

Histogram

Pattern Network

Maxima Finder

Vertex

○ Take VHDL processing blocks of 
baseline histogramming approach

○ VHDL top entities controlling input 
output signals of networks

○ Targeted ⅓ VU9P running at 360 MHz 
○ Meets timing after running networks 

through Vitis with better pipelining
○ 108 ns total algorithm latency

Association Network

Weight Network
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Conclusion

Baseline Approach to Vertex Finding

End to End Neural Network for Vertex Finding

Concept

Performance

Firmware and Network Compression

Implementation

CMS Conference Note

Future Steps
Verify in Hardware

Downstream Physics Impact

Vertex Quality Estimation

http://cds.cern.ch/record/2801638?ln=en


Backup
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Learning Track Weights

○ Network learns ideal track weighting into histogram

○ Histogram part of Network training cycle filled with: 

○ Differentiated to give:

○ Passed through convolutional network and differentiable 

ArgMax to give peak
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Track Quality

○ Fake rate is high ~20% at high pT can use 
χ2 cuts to reduce but big drop to tracking 
efficiency

○ Use small BDTs to learn to classify fakes 
based on track fit and helix parameters

○ Outperforms χ2 cuts, high fake rejection with 
only small reduction to tracking efficiency

○ Used as input feature to end-to-end neural 
network


