Imperial College London

CERN

Neural Network-Based Primary Vertex Reconstruction with FPGAs for the Upgrade of the CMS Level-1 Trigger System

Christopher Brown, Benjamin Radburn-Smith, Alex Tapper (Imperial College London) Matthias Komm (DESY) Vladimir Loncar, Maurizio Pierini, Sioni Summers, Marcel Rod (CERN)

6th April 2022

Introduction

- HL-LHC, increased number of simultaneous proton-proton interactions per bunch crossing. Good for rare physics searches, bad for current era triggering
- Tracks for the first time at L1 trigger
- Tracks to locate primary vertex (the proton-proton collision with the highest $\sum p_T^2$)
- Associate tracks and other trigger objects to vertex, reducing impact of pileup on downstream algorithms (e.g. PUPPI) -> maintain sensitivity

High pile up HL-LHC

Finding primary vertex essential for reducing impact of pile up on L1 triggering

Track Finding

Produces tracks > 2 GeV, ~100s per event with PU200

Track Finding

Produces tracks > 2 GeV, ~100s per event with PU200

Track Quality

Based on χ^2 parameters from track finding, simple cuts

Track Finding

Produces tracks > 2 GeV, ~100s per event with PU200

Track Quality

Based on χ^2 parameters from track finding, simple cuts

Vertex Finding

FastHisto, histogram all tracks in z_0 weighted by p_T , find 3 consecutive bins with highest p_T

Track Finding

Produces tracks > 2 GeV, ~100s per event with PU200

Track Quality

Based on χ^2 parameters from track finding, simple cuts

Vertex Finding

FastHisto, histogram all tracks in z_0 weighted by p_T , find 3 consecutive bins with highest p_T

Track to Vertex Association Fixed window in \boldsymbol{z}_0 or multiple windows based on track η

η range	$\left \Delta z\left(z_{\mathrm{PV}}, z_{\mathrm{trk}}\right)\right $ (cm)
$0 \leq \eta < 0.7$	0.4
$0.7 \leq \eta < 1.0$	0.6
$1.0 \le \eta < 1.2$	0.76
$1.2 \le \eta < 1.6$	1.0
$1.6 \le \eta < 2.0$	1.7
$2.0 \leq \eta < 2.4$	2.2

Track Finding

Produces tracks > 2 GeV, ~100s per event with PU200

Track Quality

Based on χ^2 parameters from track finding, simple cuts

Vertex Finding

FastHisto, histogram all tracks in z_0 weighted by p_T , find 3 consecutive bins with highest p_T

Track to Vertex Association Fixed window in \boldsymbol{z}_0 or multiple windows based on track η

Downstream Algorithms

 $\begin{array}{|c|c|c|c|}\hline \eta \ \text{range} & |\Delta z \, (z_{\rm PV}, z_{\rm trk}) \mid (\rm cm) \\ \hline 0 \leq |\eta| < 0.7 & 0.4 \\ 0.7 \leq |\eta| < 1.0 & 0.6 \\ 1.0 \leq |\eta| < 1.2 & 0.76 \\ 1.2 \leq |\eta| < 1.6 & 1.0 \\ 1.6 \leq |\eta| < 2.0 & 1.7 \\ 2.0 \leq |\eta| < 2.4 & 2.2 \\ \hline \end{array}$

c.brown19@imperial.ac.uk

Track E^T_{Miss}

PF/PUPPI etc.

8

End to End Neural Network

DNN multiple track features

End to End Neural Network

DNN multiple track features

Weighted Histogram

End to End Neural Network

DNN multiple track features

Weighted Histogram

Multilayered CNN

End to End Neural Networks for Vertex Finding

- Network trained with 2 part loss function -> Event level
 PV regression, track level PV track classification
- Simultaneous knowledge of both PV position and track to vertex association
- Robust to changes in track finding
- Additional vertex quality

Performance - Vertex Regression

- Similar performance in core of residual
- 55% reduction in tails of residual
- \circ Better identification of pileup vertices removing high p_T clusters
- Similar performance with compressed networks

c.brown19@imperial.ac.uk

Performance - Track to Vertex Association

- \circ Improvement in E_T^{miss} calculation, reduction in tails of residual
- Returns likelihood of track belonging to vertex -> flexible threshold for downstream algorithms

c.brown19@imperial.ac.uk

Firmware - Network Compression

Quantisation: Restrict Bitwidths Reduce DSP usage

VU9P	Latency (ns)	Initiation Interval (ns)	LUTs %	DSPs %	BRAMs %	FFs %
NN Weight	28	2.0	0.17	1.89	0.00	0.08
QPNN Weight	14	2.0	0.04	0.00	0.00	0.02
NN Pattern	42	38	2.54	3.74	5.28	3.20
QPNN Pattern	30	26	2.12	0.00	5.28	2.96
NN Assoc.	30	2.0	0.60	6.04	0.00	0.28
QPNN Assoc.	18	2.0	0.13	0.00	0.00	0.06

Firmware - Network Compression

Quantisation: Restrict Bitwidths Reduce DSP usage

VU9P	Latency (ns)	Initiation Interval (ns)	LUTs %	DSPs %	BRAMs %	FFs %
NN Weight	28	2.0	0.17	1.89	0.00	0.08
QPNN Weight	14	2.0	0.04	0.00	0.00	0.02
NN Pattern	42	38	2.54	3.74	5.28	3.20
QPNN Pattern	30	26	2.12	0.00	5.28	2.96
NN Assoc.	30	2.0	0.60	6.04	0.00	0.28
QPNN Assoc.	18	2.0	0.13	0.00	0.00	0.06

19

Firmware - Network Compression

Quantisation: **Restrict Bitwidths** Reduce DSP usage

Pruning:

Iteratively Remove Weights

Absolute Value of Weights

VU9P	Latency (ns)	Initiation Interval (ns)	LUTs %	DSPs %	BRAMs %	FFs %
NN Weight	28	2.0	0.17	1.89	0.00	0.08
QPNN Weight	14	2.0	0.04	0.00	0.00	0.02
NN Pattern	42	38	2.54	3.74	5.28	3.20
QPNN Pattern	30	26	2.12	0.00	5.28	2.96
NN Assoc.	30	2.0	0.60	6.04	0.00	0.28
QPNN Assoc.	18	2.0	0.13	0.00	0.00	0.06

Absolute Value of Weights

association 0

association_1

weight_1

weight 2

weight_final

association_final

of Weights

Number

Firmware - Network Compression

Quantisation: **Restrict Bitwidths** Reduce DSP usage

VU9P	Latency (ns)	Initiation Interval (ns)	LUTs %	DSPs %	BRAMs %	FFs %
NN Weight	28	2.0	0.17	1.89	0.00	0.08
QPNN Weight	14	2.0	0.04	0.00	0.00	0.02
NN Pattern	42	38	2.54	3.74	5.28	3.20
QPNN Pattern	30	26	2.12	0.00	5.28	2.96
NN Assoc.	30	2.0	0.60	6.04	0.00	0.28
QPNN Assoc.	18	2.0	0.13	0.00	0.00	0.06

Implementation

- Take VHDL processing blocks of baseline histogramming approach
- VHDL **top entities** controlling input output signals of networks
- Targeted 1/3 VU9P running at 360 MHz
- Meets timing after running networks through Vitis with better pipelining
- **108 ns** total algorithm latency

Implementation

- Take VHDL processing blocks of baseline histogramming approach
- VHDL **top entities** controlling input output signals of networks
- Targeted ¹/₃ VU9P running at 360 MHz
- Meets timing after running networks through Vitis with better pipelining
- **108 ns** total algorithm latency

Implementation

- Take VHDL processing blocks of baseline histogramming approach
- VHDL **top entities** controlling input output signals of networks
- Targeted ¹/₃ VU9P running at 360 MHz
- Meets timing after running networks through Vitis with better pipelining
- **108 ns** total algorithm latency

Conclusion

Baseline Approach to Vertex Finding

End to End Neural Network for Vertex Finding

Concept

Performance

Firmware and Network Compression

Implementation

CMS Conference Note

c.brown19@imperial.ac.uk

Future Steps

Verify in Hardware

Downstream Physics Impact

Vertex Quality Estimation

Backup

Learning Track Weights

- Network learns ideal track weighting into histogram
- Histogram part of Network training cycle filled with:

$$h_i = \sum_j^{\text{tracks}} \delta(j \in \text{bin } i) \times w(p_{\mathrm{T},j}, \eta_j, \chi_j^2, \ldots)$$

• Differentiated to give:

$$\frac{\partial h_i}{\partial \vec{w}} = \sum_{j}^{\text{tracks}} \delta(j \in \text{bin } i) \qquad \frac{\partial h_i}{\partial \vec{z}_0} = 0$$

• Passed through convolutional network and differentiable

ArgMax to give peak

$$\sum_{i=0}^N i rac{e^{x_i/T}}{\sum_{j=0}^N e^{x_j/T}}$$

Track Quality

- Fake rate is high ~20% at high p_T can use χ^2 cuts to reduce but big drop to tracking efficiency
- Use small BDTs to learn to classify fakes based on track fit and helix parameters
- Outperforms χ^2 cuts, high fake rejection with only small reduction to tracking efficiency
- Used as input feature to end-to-end neural network

