

Optimization of the B_s/B_d separation power in the ATLAS $B_{(s)}^0 \rightarrow \mu^+\mu^-$ branching ratio measurement

Ondrej Kovanda

University of Sussex ATLAS experiment

IOP HEPP & APP Annual Conference 2022

Why $B_{(s)}^0 \rightarrow \mu^+ \mu^-$?

Flavour-changing neutral current process

- Rare in Standard Model
 - No tree level contribution
- Branching ratios precisely predicted in SM [1, 2, 3]
 - B_s : (3.66 ± 0.14) × 10⁻⁹
 - B_d : $(1.03 \pm 0.05) \times 10^{-10}$
- Sensitive to NP
 - Rates altered in various BSM scenarios (LFV, MSSSM, ...)
- Clean observables
 - $BR(B_{(s)}^0 \rightarrow \mu^+ \mu^-)$, $BR(B_d)/BR(B_s)$

 \rightarrow Significant deviation from SM: hint of NP contribution

W-

Measuring $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ branching ratio

$$\mathcal{B}(B_{(s)}^{0} \to \mu^{+} \mu^{-}) = \frac{N_{d(s)}}{\varepsilon_{\mu^{+} \mu^{-}}} \times \left[\mathcal{B}(B^{+} \to J/\psi K^{+}) \times \mathcal{B}(J/\psi \to \mu^{+} \mu^{-}) \right] \frac{\varepsilon_{J/\psi K^{+}}}{N_{J/\psi K^{+}}} \times \frac{f_{u}}{f_{d(s)}}$$

$$= \mathbf{BR}$$

What are the main steps of $B^0_{(s)} \rightarrow \mu^+ \mu^-$ BR measurement?

- Extracting signal yields
 - in fits to dimuon invariant mass distribution
 - Both yields extracted in a single fit
- Cancelling systematics
 - measurement wrt. abundant reference channel
 - In ATLAS we use: $B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$
- Suppressing background
 - MVA-based event selection
 - In ATLAS we use boosted decision tree (BDT)
- Maximizing sensitivity
 - Yield extraction in categories of BDT output with different S/B ratio

Fit to dimuon invariant mass distribution in

categories of BDT output [5]

State of the art

Results SM-consistent & statistics-dominated

	$B(B_s \to \mu^+ \mu^-) \times 10^9$	B($B_d \to \mu^+ \mu^-$) × 10 ¹⁰ (95% CL)
ATLAS (2015/16) [5]	3. $2^{+1.1}_{-1.0}$ (2.8 ^{+0.8} _{-0.7})*	< 4.3 (< 2.1)*
LHCb (Run 1 + Run 2) [1]	$3.09^{+0.46}_{-0.43}{}^{+0.15}_{-0.11}$	< 2.6
CMS (Run 1 + 2016) [7]	$2.9 \pm 0.7(exp) \pm 0.2(frag)$	< 3.6

Signals very close in mass with B_d yield ~10x smaller than B_s \rightarrow signal yields correlated $\rightarrow B_d$ largely influenced by B_s

*combination with Run 1 results

Results of previous ATLAS, CMS & LHCb analyses [6]

- CMS & LHCb:
 - lower BR correlation, better B_d sensitivity
- ATLAS: Run 1 (25 fb^{-1}), 2015/16 (26.3 fb^{-1}) [5]
 - Large O(1) negative correlation of the BRs
 - Currently: Full-Run2 dataset
 - ~4x increase in statistics wrt. 2015/16

Can we minimize B_s / B_d correlation, thus increasing sensitivity to B_d ?

$B_s - B_d$ correlation in ATLAS

- $B_s B_d$ mass difference: **87 MeV**
- ATLAS dimuon mass resolution roughly: **50 120 MeV**
 - One of the limiting factors in ATLAS' Bd sensitivity
- Significant fraction of events recorded with small σ_m \rightarrow less overlap at low σ_m values
- Previously: no use of σ_m in yield extraction
 - Yields extracted in UML fit in categories of BDT output
- Aiming for best separation of the B_s / B_d signals
 - Full-Run2 goal: assess the gain of fitting events with different σ_m separately

$B_s - B_d$ separation study

- Introducing $\eta^{max} \equiv \max(|\eta_{\mu^+}|, |\eta_{\mu^-}|)$:
 - Kinematical variable strongly correlated with σ_m
 - Better reproduced in MC than σ_m
 - Complicated shape and limited statistics

 → binning in η^{max} rather than fitting functional dependence
- What's the gain if we bin our sample in η^{max} on top of the BDT binning? What binning works best?
- Addressed in a toy-MC study

$B_s - B_d$ separation study

Building models for toy generation

- Toy MCs need to account for signal and background mass shape differences at different BDT & η^{max} values
 - Mass shape parameters dependence on BDT & η^{max} studied in MC
 - Constant or linear dependence found adequate
 - Dependences incorporated into a simultaneous fit over MC binned in BDT, η^{max}

Example of Bs mass shape, and one of its

Generating toys in mass, BDT, η^{max}

η^{max} - dependent fit procedure

- Starting point: 2015/16 analysis
 - Thoroughly studied and understood fit model
 - reference for cross-checks
 - No account for η^{max}
 - 3+1 BDT bins of equal signal efficiency
- Key objective: make use of narrower signal peaks at low η^{max}
 - Introduced dependence of signal widths on
 < η^{max} >
 - Extended the binning to 3+1 BDT bins x n η^{max} bins of equal signal efficiency
- Additional dependences in η^{max}
 - Accounting for bkg shape variations in η^{max}
 - Preliminary systematics due to η^{max} binning

Validation against 2015/16 fit model

Validation against 2015/16 fit model to eliminate bugs in the procedure

- Mimic 2015/16 fitter with (BDT, η^{max}) dependent fitter
 - Freezing η^{max} dependence
 - Adjusting shape parameters to 2015/16 values
- Validation on 2015/16 data
 - The two fitters give identical result
- Validation on toys
 - Comparing pulls & residuals of the signal yields

Fitting tools are bug-free

Preliminary results

Binning schemes with 1-6 η^{max} bins were explored

- Correlation of the signal yields stays very strong even with η^{max} binning
- O(10%) increase in B_d sensitivity once η^{max} binning is introduced
- Full-run 2 SM expectations:
 - *B_s* : 400 events
 - B_d : 44 events

Additional studies

Besides overlap, the correlation can be caused by cross-talk through background components in the fit. Additional toy studies were performed:

Additional studies

Some of the final state muons loose energy through photon radiation before being detected. These "radiative candidates" then accumulate in the low-mass tail. Part of the radiative Bs candidates is then found around the Bd mass. Bs – Bd yield correlation

- How much of the correlation is due to the radiative candidates?
 - Generate toys without the radiative component
 → Correlation largely unchanged
- Is the correlation statistics-dependent?
 - Generate toys at 2015/16 statistics
 → Correlation unchanged

number of eta bins

Additional studies

An alternative approach was tested, introducing directly categories of σ_m rather than η^{max} .

- Categories cover three peaks observed in signal σ_m distribution
- Wrt. case with no η^{max}/σ_m binning:
 - Correlation improves by $\sim 10\%$
 - Better than η^{max} binning
 - Stat. uncertainty on Bd yield improves by $\sim 10\%$
 - Smaller improvement on Bs yield
 - similar to η^{max} binning

Summary

- Full-Run2 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ ATLAS analysis is underway
- Toy study has been designed to assess the gain of introducing σ_m dependence into the B_s / B_d yield fit
 - Toy datasets were generated, including dependence of shapes on BDT & η^{max}
 - η^{max} dependent procedure was designed & validated in the limiting case of no η^{max} binning
 - B_s / B_d yield correlation was studied as a function of η^{max} binning
- Additional toy studies were performed, pointing at peak overlap causing the correlation
- Binning in σ_m instead of η^{max} was tested
- We can reduce the correlation by about 10%, as well as the stat. uncertainty on the B_d yield
 - This gain must be assessed considering additional systematics introduced by resolutiondependent fit

Resources

[1] LHCb Collaboration, Analysis of neutral B-meson decays into two muons, Phys. Rev. Lett. 128 (2022) 041801, arXiv: 2108.0928 [hep-ph]

[2] C. Bobeth et al., $B_{s,d} \rightarrow l^+ l^-$ in the Standard Model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801, arXiv:1311.0903 [hep-ph]

[3] M. Beneke, C. Bobeth, and R. Szafron, Power-enhanced leading-logarithmic QED corrections to $B_q \rightarrow \mu^+ \mu^-$, JHEP 10 (2019) 232, arXiv:1908.07011 [hep-ph]

[4] D. Straub: New physics searches in flavour physics, Nuovo Cim.C 035N1 (2012), 249 arXiv:1107.0266 [hep-ph]

[5] ATLAS Collaboration, Study of the rare decays of B_s^0 and B^0 mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098, arXiv: 1812.03017 [hep-ph]

[6] ATLAS, CMS, LHCb Collaborations, Combination of the ATLAS, CMS and LHCb results on the $B^0_{(s)} \rightarrow \mu^+\mu^-$ decays, ATLAS-CONF-2020-049 (2020)

[7] CMS collaboration, A. M. Sirunyan et al., Measurement of properties of $B_s^0 \rightarrow \mu^+ \mu^-$ decays and search for $B^0 \rightarrow \mu^+ \mu^-$ with the CMS experiment, JHEP 04 (2020) 188, arXiv:1910.12127 [hep-ph]