Search for Exclusive Hadronic W Decays Júlia Silva

IoP HEPP & APP Conference 2022

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

Motivation

- → None of the exclusive hadronic W decays predicted by the Standard Model have been observed!
 - These can offer novel precision studies of QCD factorisation (<u>arXiv:1501.06569</u>)
- → Searches currently underway for $W^{\pm} \rightarrow \pi^{\pm}\gamma$, $W^{\pm} \rightarrow \rho^{\pm}\gamma$ and $W^{\pm} \rightarrow K^{\pm}\gamma$ at ATLAS, using LHC Run-2 data

Channel	SM predictions	95% CL Limits		
W [±] →π [±] γ	$(4.0 + 0.0) = 10^{-9}$	<u>CDF</u>	<7x10 ⁻⁶	
	$(4.0 \pm 0.8) \times 10^{-9}$	<u>CMS</u>	<1.5x10 ⁻⁵	
W [±] →K [±] γ	$(3.3 \pm 0.7) \times 10^{-10}$	No limits available		
W [±] →ρ [±] γ	$(8.7 \pm 1.9) \times 10^{-9}$			

Analysis Final States

- → $W^{\pm} \rightarrow \pi^{\pm}/K^{\pm} + \gamma$: Isolated high p_T track recoiling against isolated high p_T photon
- → $W^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^{0}) + \gamma$: extra electromagnetic deposition coming from π^{0}

Dedicated Trigger

→ Dedicated triggers allow us to identify specific event topology

- Developed for exclusive Higgs/Z/W analyses
 - Using modified tau-lepton trigger algorithms (meson decay similar to hadronic tau decays)
- → Collected 136 fb⁻¹ from 2016 to 2018
 - With around **56% efficiency** wrt offline selection

[used in track + photon analysis]

$Z \rightarrow ee rejection$

- → Resonant background arising from Z → ee events, with electron faking a photon
- → Peaking background, close to signal, not modelled by background modelling method
- → Devised background rejection selection (here exemplifying with track+photon final state)

- → Look for closest reconstructed electron to track in ΔR
- → Reject if eProbabilityHT > 0.1 and Rhad < 0.03</p>

Efficiencies:

- → Signal = 95%
- → $Z \rightarrow ee Background = 9\%$

Background Modelling

- Neither shape or normalisation reliably modelled by MC
- → A data-driven non-parametric method is applied (arXiv:2112.00650):
 - Generation Region (GR): Large sample of W candidates, with relaxed requirements
 - Model relevant kinematic/isolation distributions from data in GR → create 2D/3D templates that should model highest correlations in data
 - Generate pseudo-candidates after sampling from templates
 - Apply **Signal Region** requirements
 - Validation Regions (VR): check the model

	track + photon selection	
VR1	GR + p _τ (π) > 33 GeV	
VR2	GR + Photon Iso	
VR3	GR + Track Iso	
SR	SR GR + all of the above	

m(track+γ)

Search for Exclusive Hadronic W Decays

m(ρ+γ)

VR1

VR2

VR3

SR

 \rightarrow

Júlia Silva

Signal Modelling

- → Decays modelled with Powheg + Pythia generators
- → Reconstructed W invariant mass shape modelled through:

Systematic Uncertainties

Background Systematics:		Signal Systematics:				
 Estimated through modifications to modelling procedure: p_T(γ) shifted by ±3 GeV distortions to ΔΦ 		Source	track + photon	ρ+ photon		
 W mass tilt through linear re-weighting 		Cross Section	3.4 %			
p _τ (γ) shift	distortions to ΔΦ	W mass tilt	Luminosity	1.7	%	
ATLAS 120 ATLAS ATLA	Photon Efficiency	2.1 %	1.9 %			
	B0 Mass Tilt Down Mass Tilt Down	Track Efficiency	1.2 %	-		
	40	EG Scale	0.2 %	3.0 %		
50 100 150 200 250 300 1.5 1.0 1.0	50 100 150 200 250 300 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\mathbb{R}^{50}_{\text{M}} = \mathbb{R}^{50}_{\text{M}} = \mathbb{R}^{50}_{$	EG Resolution	0.1 %	4.9 %	
$m_{\pi\gamma}^{\frac{10}{20}}$ 0.5 100 150 200 250 300 $m_{\pi\gamma}^{250}$ [GeV]	$m_{\pi\gamma}[GeV]$		Trigger	0.4 %	10 %	
[plots from track + photon final state]						

IoP HEPP & APP 2022

UNIVERSITY^{OF} BIRMINGHAM

Júlia Silva

Search for Exclusive Hadronic W Decays

Unbinned Maximum Likelihood Fit in track + photon mass

- Floating background normalisations
- Nuisance parameters for systematic uncertainties
 - Background shape systematics as "morphing" NPs

 $\pm 1\sigma$

1.81/0.93

1.62/0.84

• Asymptotic CL_s with profile likelihood as test statistic

 $W \rightarrow \pi \gamma$

W→ Kγ

Expected (x10⁻⁶)

1.30

1.17

 $\pm 2\sigma$

2.42/0.70

2.18/0.63

\rightarrow Practically no overlap between events in the two final states (< 0.3%)

- Dedicated triggers and diphoton triggers used found to be ~orthogonal
- → Unbinned Maximum Likelihood Fit in track + photon and ρ + photon mass
 - performed single fit in two categories, with correlated $\mu(W \rightarrow \rho \gamma)$
 - combination improves limit on Br($W \rightarrow \rho \gamma$) by ~20%

	Expected (x10 ⁻⁶)	$\pm 1\sigma$	±2 <i>o</i>		
track + photon*	7.12	9.91/5.13	13.29/3.82		
ρ + photon	4.06	5.79/2.93	8.17/2.18		
combined	3.28	5.29/2.36	7.04/1.76		
[*W→ πγ fixed to 0 in this resul					

→ None of the exclusive hadronic decays of the W boson have been observed

- Weak or no experimental constraints available
- → Searches for these decays enabled by:
 - Dedicated meson + photon triggers
 - Data-driven non-parametric background modelling method

→ Expected upper limits:

- Expected to set best upper limit on $B(W^{\pm} \rightarrow \pi^{\pm} \gamma)$ at 95% CL
- Setting first limits on $B(W^{\pm} \rightarrow \rho^{\pm} \gamma)$ and $B(W^{\pm} \rightarrow K^{\pm} \gamma)!$

THANK YOU AND STAY TUNED!!!

BACK-UP

Background Model - trk + photon

