

Harry Cooke, University of Birmingham

April 5, 2022

$Z\gamma$ Multiboson Interactions

A Probe for the Standard Model

Introduction and Motivation

Introduction

- What are multiboson interactions and why are they interesting?
- Many processes being studied by ATLAS, will focus on two I have been involved with
 - Both featuring a Z boson and a photon in the final state
 - Both feature 4 bosons interacting at a single vertex (quartic couplings)

Multiboson Interactions

Processes with multiple gauge bosons interacting at the same vertex

 $\hfill\square$ Contrary to 'typical' vertices with two fermions and a boson

For gluons, this is very common, but less so for electroweak bosons

Even rarer interactions exist in the Standard Model with 4 bosons at a vertex

Intro.

In the Standard Model

The Standard Model provides several mechanisms for four bosons to interact at tree level

Triple couplings

Higgs exchange

Due to the lack of neutral couplings and Higgs-photon couplings in the Standard Model, only two vertices are possible with a Z boson and a photon

Intro.

Theories beyond the Standard Model could introduce further mechanisms for interactions involving a Z boson and a photon

- Neutral couplings could be introduced by a BSM theory
- A new resonance may exist that decays to Zy

The presence of any such diagrams could change the observed rate of the VBS Z γ or VZ γ processes from the Standard Model prediction

VBS Z γ Analysis

VBS Z γ

VBS

Measurement of electroweak production of ${\rm Z}\gamma$ with two jets

 Z decaying to two electrons or muons

 \Rightarrow Gives a *jjll* γ final state

 Focus on vector-boson scattering (VBS) topologies which contain multiboson interactions

Complete info on the analysis here

Backgrounds

QCD $Z\gamma$

Dominant background is QCD $Z\gamma$ production

- Key difference is colour-connected jets
 - Smaller separation between jets
 - QCD activity in the gap

Known mismodelling for high dijet masses, corrected from data in a control region

Z+jets

- Second largest background, Z+jets with a jet faking a photon
- Fake photon yield estimated from data with ABCD method

Other backgrounds

- Other, smaller backgrounds include
 - $\Box t\bar{t}\gamma$
 - □ WZ*jj*
 - Pile-up background

Harry Cooke

Selection

- Enhance VBS component by cutting on jet rapidity difference and dijet mass
- Discriminate against QCD background by requiring the Zγ system to be central and placing a veto on 'gap jets'
- Remove FSR processes, where the photon is a decay product of the Z, by cutting on *m_{ℓℓγ}* and *m_{ℓℓ}*

	$\ell^+\ell^-\gamma jj$ preselection		
Lepton	$p_T^\ell > 30, 20 { m GeV} \ \eta_e < 2.47 ({ m excl.} 1.37 < \eta_e < 1.52)$		
	$ \eta_{\mu} < 2.5$ Exactly 2 leptons		
Photon	$E_T^\gamma > 25~{ m GeV}$		
	$ \eta_{\gamma} < 2.37$ (excl. $1.37 < \eta_{\gamma} < 1.52$) At least 1 photon		
Jet	$p_{T}^{j} >$ 50 GeV		
	$ y_j < 4.5$		
	At least 2 jets		
	$ \Delta y_{jj} > 1.0$		
	$m_{jj} > 150 { m GeV}$		
	No b-jets		
	$N_j^{ m gap}=0$		
Boson	$m_{\ell\ell} > 40~{ m GeV}$		
	$rac{m_{\ell\ell}+m_{\ell\ell\gamma}>182\;{ m GeV}}{\zeta(\ell\ell\gamma)<5}$		

Results

Z

VBS

- Significance extracted from a template fit in m_{jj}
 - \Box Observed 10 σ excess (expected 11 σ)
- \Rightarrow First observation by ATLAS of this process

Measured fiducial cross-sections for EW and EW+QCD production: $\sigma_{EW} = 4.49 \pm 0.40 \text{ (stat.)} \pm 0.42 \text{ (syst.) fb}$ $\sigma_{EW+QCD} = 20.6 \pm 0.6 \text{ (stat.)}^{+1.2}_{-1.0} \text{ (syst.) fb}$

Semileptonic VZ γ Analysis

Semileptonic VZ γ

- V is a W or Z boson decaying to quarks (jets)
- Z boson decaying to two electrons or muons
 - \Rightarrow Gives a $jjll\gamma$ final state

First attempt to measure this process

SM Vertices

W

BDT Selection

 $VZ\gamma$

lank	Variable	Importance
1	$ \Delta y_{jj} $	8.266e-02
2	$\cos \theta^*$	8.025e-02
3	$\cos \theta_{\rm CS}$	7.614e-02
4	Уј,2	7.028e-02
5	$y_{j,1}$	6.636e-02
6	$\Delta R_{\min}(y, j)$	6.628e-02
7	$\Delta R(Z\gamma, jj)$	6.265e-02
8	У _{II}	6.258e-02
9	p^T balance	6.040e-02
10	$\Delta \phi(II\gamma, jj)$	5.392e-02
11	p_{ii}^T	5.266e-02
12	$\tilde{\log}(\zeta(Z\gamma))$	5.190e-02
13	$m_{j,2}$	4.446e-02
14	$N_i^{\rm btag}$	3.861e-02
15	$p_{i,1}^T$	3.629e-02
16	Ň _j	3.112e-02
17	$m_{i,1}$	3.017e-02
18	Nigap	2.929e-02
19	$p_{j,2}^{T}$	3.988e-03

BDT selection focuses on jet variables, to identify cases where jets are from a boson decay.

Currently in development, working to optimise discrimination against the dominant background: QCD production of Z γ +jets

Outlook

 $VZ\gamma$

- Sensitivity estimate for SM cross-section currently at 1-2σ level
 - Analysis optimisation continuing
- Constraining this channel should be of interest for BSM constraints
 - e.g. effective field theories (EFTs) or new physics models

Conclusion

- Multiboson interactions are rare standard model processes, but also act as a probe for new physics
- Measuring processes with a Zγ pair gives sensitivity to possible neutral couplings in beyond Standard Model theories
- Two analyses discussed that look to measure Zγ processes with contributions from quartic vertices:

