Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary	Backup

Measurement of EWK $W\gamma jj$ production at ATLAS

Benjamin Honan

University of Manchester

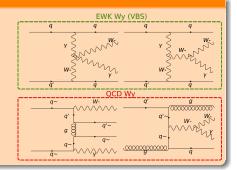
Tuesday 5th April, 2022

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary O	Backup O
Outline				

Vector Boson Scattering

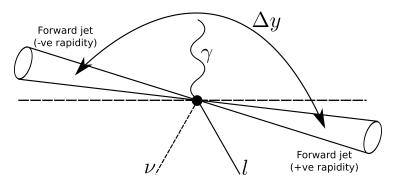
2 EWK W γ measurement

③ Preliminary Results


Vector Boson Scattering ●○	EWK W γ measurement	Preliminary Results	Summary O	Backup O
Introduction to				

Vector Boson Scattering

- $\bullet~2 \rightarrow 2$ scattering of Vector bosons sensitive to gauge boson couplings.
- Allow for searches of new physics through Anomalous Quartic Gauge Couplings.
- Divergent VBS scattering amplitude regulated at high energies by Higgs exchange.
- VBS processes put constraints on fundamental Higgs properties


EWK and QCD $W\gamma jj$ Production

- EWK Wγjj production is calculated at O(α⁺_{EW}) at amplitude level and includes diagrams involving a t-channel exchange of an EWK boson (W, γ, Z).
- QCD $W\gamma jj$ production has no EWK boson exchanged in the t-channel and is calculated at $\mathcal{O}(\alpha_s^2 \alpha_{EW}^2)$ at amplitude level.

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary	Backup
00				

VBS Phenomenology

Key Electro-Weak VBS features

- 1 Two forward jets with large p_T , m_{jj} and Δy_{jj} .
- **2** Little hadronic activity in central region. Quantified by $N_{\text{gapjets}} \equiv$ number of jets in rapidity gap Δy .

3 Centrally produced bosons relative to jets. Quantified by centrality $\xi_{w\gamma}$. $\xi_{w\gamma} \equiv \frac{y_{W\gamma} - \frac{1}{2}(y_{j1} + y_{j2})}{|\Delta y_{ii}|}.$

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary	Backup
	•00			
EWK W γ meas	surement			

Analysis goals

- Observe electroweak $W\gamma jj$ production at 13TeV at the ATLAS detector (already observed by CMS)
- Calculate differential cross-section of VBS sensitive variables
- Put constraints on anomalous gauge interactions defined through an EFT

Observables

Measurement observables chosen to facilitate:

- **()** Characterising the W γ -VBS process.
- Probing sensitivity to EFT parameters.

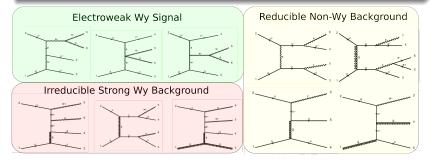
The observables we are measuring are: m_{jj} , p_{Tjj} , $\Delta \phi_{jj}^{\text{signed}}$.

EFT Constraints

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i \tag{1}$$

- 3-point and 4-point interactions probed through dim-6 and dim-8 operators.
- EFT-dependent theoretical predictions and measured differential cross-sections used to define a profile likelihood.
- Perform profile likelihood fit to obtain expected and observed confidence limits on EFT Wilson coefficients.

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary	Backup
	000			
Event Selection				


Event Selection criteria

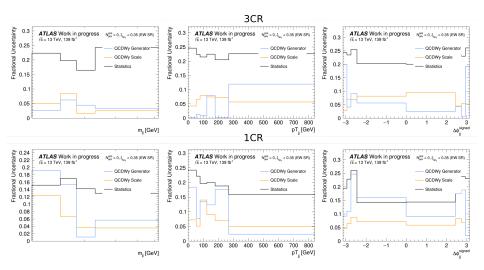
VBS Enhanced Phasespace:

- Two hard leading jets
- Large di-jet invariant mass
- Large rapidity gap between the two jets

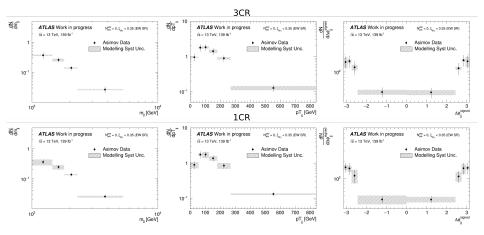
Reducible background suppression:

- Second lepton veto
- b-jet veto
- Z veto
- Tight and isolated lepton and photon

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary O	Backup O
Signal extractio	n method			


- Poorly modelled Strong $W\gamma$ background in VBS enhanced regions \Rightarrow important to derive data-driven corrections.
- Use VBS characteristics (low $N_{gapjets}$, low $W\gamma$ centrality) to define Signal and Control Region(s). Define likelihood function to simultaneously constrain background and extract signal strength.
- 1CR \Rightarrow Have 2 N_{bins} DoF. Need N_{bins} free parameters to extract signal and N_{bins} free parameters to constrain background. No DoF left for residual corrections.
- Method pioneered by ATLAS VBF-Z analysis.

Three Control Region Fit


Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary O	Backup O
Durlingham		d Crat Harristel		

Preliminary results - Modelling and Stat Uncertainties

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary	Backup
		00		

Preliminary results - Relative Yields

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary •	Backup O
Summary				

- The study of VBS processes allows for searches of new physics through aQGCs and can put constraints on fundamental Higgs properties.
- The ATLAS VBS W γ analysis aims to make an observation of the EWK production of $W\gamma jj$ in a VBS enhanced phase-space.
- The feasibility of a differential cross-section measurement is being determined using 3CR and 1CR fits to extract a signal and constrain the dominant irreducible background.
- We aim to measure three jet observables: m_{jj} , p_{Tjj} , and $\Delta \phi_{ii}^{signed}$.
- Unfolding of the differential measurement still needs to be performed.
- Full set of systematic uncertainties on differential yield and statistical resolution studies of systematic uncertainties still need to be obtained.

Vector Boson Scattering	EWK W γ measurement	Preliminary Results	Summary O	Backup ●
Backup I				

Backup Slides