

W-boson and Its Polarisation at NNLO

Andrei Popescu

in collaboration with

Rene Poncelet and Mathieu Pellen

based on 2102.13583, 2109.14336

Tuesday, 5 April 2022

Cavendish Laboratory

UNIVERSITY OF CAMBRIDGE

popescu@hep.phy.cam.ac.uk

Why study polarised W-boson at NNLO precision?

Motivation

Why study polarised W-boson at NNLO precision?

The Standard Model

Probe the Electroweak mechanism:

- \rightarrow **Longitudinal polarisation** and massiveness of W[±], *Z* bosons is the direct consequence of the Electroweak symmetry breaking mechanism.
- \rightarrow Processes involving longitudinal boson **constrain** EFT operators.
- $\rightarrow~$ Any deviation from the Standard Model prediction will hint to new physics.

Motivation

Why study polarised W-boson at NNLO precision?

Probe the Electroweak mechanism:

- \rightarrow **Longitudinal polarisation** and massiveness of W[±], Z bosons is the direct consequence of the Electroweak symmetry breaking mechanism.
- \rightarrow Processes involving longitudinal boson **constrain** EFT operators.
- $\rightarrow\,$ Any deviation from the Standard Model prediction will hint to new physics.

Use accumulated statistics

 $\rightarrow\,$ Luminosities of Run 2 LHC (150 fb⁻¹) and beyond (Run 3: 300 fb⁻¹, High-lumi: 3000 fb⁻¹) will allow for **precise measurements** of processes involving weak bosons.

The Standard Model

Motivation

Why study polarised W-boson at NNLO precision?

Probe the Electroweak mechanism:

- \rightarrow Longitudinal polarisation and massiveness of W^{\pm}, Z bosons is the direct consequence of the Electroweak symmetry breaking mechanism.
- \rightarrow Processes involving longitudinal boson **constrain** EFT operators.
- $\rightarrow\,$ Any deviation from the Standard Model prediction will hint to new physics.

Use accumulated statistics

 $\rightarrow\,$ Luminosities of Run 2 LHC (150 fb⁻¹) and beyond (Run 3: 300 fb⁻¹, High-lumi: 3000 fb⁻¹) will allow for **precise measurements** of processes involving weak bosons.

Squeeze out all what theory can offer

 \rightarrow Higher-order corrections are essential in reducing **theoretical uncertainty**: LO \sim 12%, NLO \sim 7%, NNLO \sim 2% (process-dependent).

The Standard Model

Boson Polarisation

 As a massive spin-1 particle, the on-shell boson has a basis of 3 polarisation vectors ε_i^μ:

$$\epsilon_L = \frac{1}{\sqrt{2}}(0, 1, -i, 0), \quad \epsilon_R = -\frac{1}{\sqrt{2}}(0, 1, i, 0), \quad \epsilon_0 = \frac{1}{M}(p, 0, 0, E).$$

Boson Polarisation

 As a massive spin-1 particle, the on-shell boson has a basis of 3 polarisation vectors ε_i^μ:

$$\epsilon_L = \frac{1}{\sqrt{2}}(0, 1, -i, 0), \quad \epsilon_R = -\frac{1}{\sqrt{2}}(0, 1, i, 0), \quad \epsilon_0 = \frac{1}{M}(p, 0, 0, E).$$

• Boson is short-lived ($\tau_W \approx 3 \cdot 10^{-25} s$), so we detect its **decay products**, which also prompt interferences between polarised amplitudes A_{λ} :

$$A_{\lambda} = \mathbf{P}_{\mu} \cdot \frac{\epsilon_{\lambda}^{\mu} \epsilon_{\lambda}^{\nu*}}{k^2 - M_V^2 + iM_V \Gamma_V} \cdot \mathbf{D}_{\nu} \qquad \Longrightarrow \qquad A_{\text{unpol.}}^2 = \sum_{\lambda} |A_{\lambda}|^2 + \sum_{\lambda \neq \lambda'} A_{\lambda}^* \cdot A_{\lambda}'$$

Boson Polarisation

 As a massive spin-1 particle, the on-shell boson has a basis of 3 polarisation vectors ε_i^μ:

$$\epsilon_L = \frac{1}{\sqrt{2}}(0, 1, -i, 0), \quad \epsilon_R = -\frac{1}{\sqrt{2}}(0, 1, i, 0), \quad \epsilon_0 = \frac{1}{M}(p, 0, 0, E).$$

• Boson is short-lived ($\tau_W \approx 3 \cdot 10^{-25} s$), so we detect its **decay products**, which also prompt interferences between polarised amplitudes A_{λ} :

$$A_{\lambda} = \mathbf{P}_{\mu} \cdot \frac{\epsilon_{\lambda}^{\mu} \epsilon_{\lambda}^{\nu*}}{k^2 - M_V^2 + iM_V \Gamma_V} \cdot \mathbf{D}_{\nu} \qquad \Longrightarrow \qquad A_{\text{unpol.}}^2 = \sum_{\lambda} |A_{\lambda}|^2 + \sum_{\lambda \neq \lambda'} A_{\lambda}^* \cdot A_{\lambda}'$$

- For polarisation interpretation one needs **on-shell** W-boson, which can be achieved via:
 - (a) Narrow-width approximation: generate on-shell phase space
 - (b) **On-shell projection**: map full phase space to on-shell phase space

These methods introduce off-shell effects, which are roughly of order $\Gamma_W/M_W \approx 0.025$.

Boson Polarisation (2)

• The goal is to break down differential distributions into **polarised** components:

$$\frac{d\sigma}{dX} \longrightarrow \frac{d\sigma_L}{dX} + \frac{d\sigma_R}{dX} + \frac{d\sigma_0}{dX}$$

Figure: Angle of lepton emission for W^+ at the LHC

Boson Polarisation (2)

• The goal is to break down differential distributions into **polarised** components:

$$\frac{d\sigma}{dX} \longrightarrow \frac{d\sigma_L}{dX} + \frac{d\sigma_R}{dX} + \frac{d\sigma_0}{dX}$$

• Can be done at amplitude level:

$$\left(-g_{\mu\nu} + \frac{k^{\mu}k^{\nu}}{k^2}\right) \longrightarrow \epsilon_{\lambda}\epsilon_{\lambda}$$

Figure: Angle of lepton emission for W^+ at the LHC

Boson Polarisation (2)

• The goal is to break down differential distributions into **polarised** components:

$$\frac{d\sigma}{dX} \longrightarrow \frac{d\sigma_L}{dX} + \frac{d\sigma_R}{dX} + \frac{d\sigma_0}{dX}$$

• Can be done at amplitude level:

$$\left(-g_{\mu\nu} + \frac{k^{\mu}k^{\nu}}{k^2}\right) \longrightarrow \epsilon_{\lambda}\epsilon_{\lambda}$$

• With **no cuts**, angular emission distribution is described analytically:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{4} \sin^2\theta \cdot f_0 \\ + \frac{3}{8} (1 \mp \cos\theta)^2 \cdot f_L + \frac{3}{8} (1 \pm \cos\theta)^2 \cdot f_R$$

where f_i are coefficients that depend on production part of the process.

Figure: Angle of lepton emission for W^+ at the LHC

Boson Polarisation (3)

• We focus on the longitudinal polarisation, so we use transverse polarisation as correlated sum of left and right pol.:

$$\frac{d\sigma_T}{dX} \equiv \frac{d\sigma_L}{dX} + \frac{d\sigma_R}{dX} + \frac{d\sigma_{\text{interf}}}{dX}$$

Figure: Angle of lepton emission for W^+ at the LHC

Boson Polarisation (3)

• We focus on the longitudinal polarisation, so we use transverse polarisation as correlated sum of left and right pol.:

$$\frac{d\sigma_T}{dX} \equiv \frac{d\sigma_L}{dX} + \frac{d\sigma_R}{dX} + \frac{d\sigma_{\text{interf.}}}{dX}$$

• Ratios to polarisation sum define **polarisation shapes** which can be used in experimental fits to **unpolarised** data.

The cross section breaks down into polarisation shapes and fractions:

$$\frac{d\sigma}{dX} \to f_0 \cdot \left[\frac{d\sigma_0}{dX}\right]_{\text{norm.}} + f_T \cdot \left[\frac{d\sigma_T}{dX}\right]_{\text{norm.}}$$

Figure: Angle of lepton emission for W^+ at the LHC

Boson Polarisation (3)

• We focus on the longitudinal polarisation, so we use transverse polarisation as correlated sum of left and right pol.:

$$\frac{d\sigma_T}{dX} \equiv \frac{d\sigma_L}{dX} + \frac{d\sigma_R}{dX} + \frac{d\sigma_{\text{interf.}}}{dX}$$

• Ratios to polarisation sum define **polarisation shapes** which can be used in experimental fits to **unpolarised** data.

The cross section breaks down into polarisation shapes and fractions:

$$\frac{d\sigma}{dX} \to f_0 \cdot \left[\frac{d\sigma_0}{dX}\right]_{\text{norm.}} + f_T \cdot \left[\frac{d\sigma_T}{dX}\right]_{\text{norm.}}$$

- Experimental cuts modify polarisation shapes and introduce interferences.
 - $\rightarrow\,$ We need to pick **phase space regions** where interference and off-shell effects are small.

Figure: Angle of lepton emission for W^+ at the LHC

W in Association With One Jet

W in Association With One Jet ::: Literature

Literature

- Experimental
 - → Polarised W+j [ATLAS 1203.2165, CMS 1104.3829]
- Theoretical
 - → Polarised W+j up to NLO QCD [Bern et al. 1103.5445] [Stirling et al. 1204.6427] [Belyaev et al. 1303.3297]

Figure: ATLAS measurements (2012)

W in Association With One Jet ::: Literature

Literature

- Experimental
 - → Polarised W+j [ATLAS 1203.2165, CMS 1104.3829]
- Theoretical
 - → Polarised W+j up to NLO QCD [Bern et al. 1103.5445] [Stirling et al. 1204.6427] [Belyaev et al. 1303.3297]
 - → Unpolarised W+j up to NNLO QCD + NLO EW [Denner et al. 0906.1656] [Boughezal et al. 1602.06965, 1504.02131] [Gehrmann et al. 1901.11041]

Figure: ATLAS measurements (2012)

W in Association With One Jet ::: Literature

Literature

- Experimental
 - → Polarised W+j [ATLAS 1203.2165, CMS 1104.3829]
- Theoretical
 - → Polarised W+j up to NLO QCD [Bern et al. 1103.5445] [Stirling et al. 1204.6427] [Belyaev et al. 1303.3297]
 - → Unpolarised W+j up to NNLO QCD + NLO EW [Denner et al. 0906.1656] [Boughezal et al. 1602.06965, 1504.02131] [Gehrmann et al. 1901.11041]
- Our contribution
 - → Polarised W+j at NNLO [Pellen, Poncelet, AP 2109.14336]

Figure: ATLAS measurements (2012)

٠

Fiducial setup for pp \rightarrow Wj $\rightarrow \ell \nu j @ 13$ TeV Fiducial setup for pp \rightarrow Wj \rightarrow $\ell \nu j @ 13$ TeV Looking for distinctive polarisation 500 NNLO W⁺ pol.sum. shapes (i.e not flat) NNLO W_T 400 NNLO WI $d\sigma/dp_{\rm T}$ [fb/GeV] \int_{0}^{10} - NNLO W⁺ pol.sum. - NNLO W_T⁺ 100 - NNLO W⁺ -1.00 - 0.75 - 0.50 - 0.25 0.00 0.250.75 1.00 20 80 100 0.50 Ô. 40 $\cos \Delta \theta(\ell^+, j_1)$ p_{T,ℓ^+}

•

Fiducial setup for $pp \rightarrow W_j \rightarrow \ell \nu_j @ 13 \text{ TeV}$ Fiducial setup for pp \rightarrow Wj \rightarrow $\ell \nu j @ 13$ TeV Looking for distinctive polarisation 500 - NNLO W⁺ pol sum shapes (i.e not flat) NNLO W_T 400 NNLO WI e.g: $\frac{d\sigma/dp_{\rm T}}{\approx} [{\rm fb/GeV}]$ $d\sigma/d\cos\Delta\theta$ [fb] 00 00 00 00 \rightarrow lepton $p_{\rm T}$ \rightarrow polar angle between ℓ^{\pm} , jet - NNLO W⁺ pol.sum. - NNLO W_T⁺ 100 - NNLO W⁺ 8.0 d⁽ⁱ⁾ ۵.8 d⁽⁾ $\int_{a}^{d} \frac{0.6}{0.4} \frac{0.6}{0.2} p/_{(d)} \rho p$ Q 0.6 $\sum_{(d)} \frac{p}{p} \frac{1}{p} \frac{p}{p} \frac{1}{p} \frac{p}{p} \frac{p}$ -1.00 - 0.75 - 0.50 - 0.25 0.00 0.250.50 0.75 1.00 20 80 100 Ô. 40 $\cos \Delta \theta(\ell^+, j_1)$ p_{T,ℓ^+}

Looking for distinctive polarisation ۲ shapes (i.e not flat)

e.g:

- \rightarrow lepton $p_{\rm T}$
- \rightarrow polar angle between ℓ^{\pm} , jet
- QCD corrections: ٠
 - \rightarrow NLO: up to 200-1000% due to new kinematic freedom
 - \rightarrow NNLO: 5-10%

• Looking for distinctive polarisation shapes (i.e not flat)

e.g:

- \rightarrow lepton $p_{\rm T}$
- $\rightarrow~$ polar angle between $\ell^{\pm},$ jet
- QCD corrections:
 - $\rightarrow\,$ NLO: up to 200-1000% due to new kinematic freedom
 - \rightarrow NNLO: 5-10%
 - $\rightarrow \ Longitudinal W is affected more than transverse by a factor of 3 at NNLO$

• Looking for distinctive polarisation shapes (i.e not flat)

e.g:

- \rightarrow lepton $p_{\rm T}$
- $\rightarrow~$ polar angle between $\ell^{\pm},$ jet
- QCD corrections:
 - $\rightarrow\,$ NLO: up to 200-1000% due to new kinematic freedom
 - \rightarrow NNLO: 5-10%
 - $\rightarrow \ Longitudinal W is affected more than transverse by a factor of 3 at NNLO$
 - $\rightarrow~$ Theoretical uncertainty drops from $\sim\!7\%$ at NLO to $\sim\!2\%$ at NNLO.

Importantly, theoretical uncertainty on polarised shapes is reduced at NNLO.

W in Association With One Jet ::: Fit to extrapolated data

• Due to **large systematic errors**, currently published data do not allow for precise shape fits.

Figure: CMS'17 data shows 6-9% errors on distribution of rapidity of the hardest jet.

W in Association With One Jet ::: Fit to extrapolated data

- However, we have determined that at **projected luminosity** of 250 fb⁻¹ (mid-Run 3), NNLO corrections shrink overlapping fit uncertainty of the fit by a factor of 2 across several observables.
 - $\rightarrow\,$ distribution of fits (x) for each scale is much denser for NNLO shapes.
 - \rightarrow fit uncertainty depends on data errors

Figure: Fit of polarised shapes at NLO (left) and NNLO (right) to mock data (off-shell distribution) for the distribution of angle between the lepton and the hardest jet.

Diboson production

Literature

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]

Literature

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]

\rightarrow Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]

Literature

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]
 - → Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]
- Experimental
 - $\rightarrow~$ ATLAS $W^{\pm}Z$ measurement (13 TeV) [1902.05759]

Literature

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]
 - → Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]
- Experimental
 - \rightarrow ATLAS W[±]Z measurement (13 TeV) [1902.05759]
- Our contribution
 - \rightarrow Polarised W⁺W⁻ at NNLO (fully-leptonic) [Poncelet, AP 2102.13583]

First polarised prediction at NNLO!

05 April 2022

Literature

Features of W^+W^- (fully-leptonic)

05 April 2022

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]
 - → Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]
- Experimental
 - \rightarrow ATLAS W[±]Z measurement (13 TeV) [1902.05759]
- Our contribution
 - \rightarrow Polarised W⁺W⁻ at NNLO (fully-leptonic) [Poncelet, AP 2102.13583]

First polarised prediction at NNLO!

<u>Literature</u>

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]
 - → Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]
- Experimental
 - $\rightarrow~$ ATLAS W $^{\pm}Z$ measurement (13 TeV) [1902.05759]
- Our contribution
 - \rightarrow Polarised W⁺W⁻ at NNLO (fully-leptonic) [Poncelet, AP 2102.13583]

First polarised prediction at NNLO!

Features of W^+W^- (fully-leptonic)

• Largest cross-section among other diboson processes (setup of [1912.00068])

 $\sigma_{\rm WW} \approx 415 \, {\rm fb} \quad \sigma_{\rm ZZ} \approx 40 \, {\rm fb} \quad \sigma_{\rm WZ} \approx 28 \, {\rm fb}$

<u>Literature</u>

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]
 - → Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]
- Experimental
 - $\rightarrow~$ ATLAS W $^{\pm}Z$ measurement (13 TeV) [1902.05759]
- Our contribution
 - \rightarrow Polarised W⁺W⁻ at NNLO (fully-leptonic) [Poncelet, AP 2102.13583]

First polarised prediction at NNLO!

Features of W^+W^- (fully-leptonic)

• Largest cross-section among other diboson processes (setup of [1912.00068])

 $\sigma_{\rm WW} \approx 415 \, {\rm fb}$ $\sigma_{\rm ZZ} \approx 40 \, {\rm fb}$ $\sigma_{\rm WZ} \approx 28 \, {\rm fb}$

• Polarised W⁺W⁻ channels probe EFT operators

<u>Literature</u>

- Theoretical
 - \rightarrow EFT operators and polarised measurements [Liu, Wang 1804.08688]
 - \rightarrow Polarised diboson studies at NLO QCD [Denner et al. 2006.14867, 2010.07149]
 - → Double-pole approximation (DPA) [Billoni et al. 1310.1564] [Ballestrero et al. 1710.09339, 1907.04722]
 - → Off-shell production up to NNLO QCD + NLO EW [Caola et al. 1511.08617] [Grazzini et al. 1605.02716, 1912.00068] [Lombardi et al. 2103.12077]
- Experimental
 - $\rightarrow~$ ATLAS $W^{\pm}Z$ measurement (13 TeV) [1902.05759]
- Our contribution
 - \rightarrow Polarised W⁺W⁻ at NNLO (fully-leptonic) [Poncelet, AP 2102.13583]

First polarised prediction at NNLO!

Features of W^+W^- (fully-leptonic)

• Largest cross-section among other diboson processes (setup of [1912.00068])

 $\sigma_{\rm WW} \approx 415 \, {\rm fb} \quad \sigma_{\rm ZZ} \approx 40 \, {\rm fb} \quad \sigma_{\rm WZ} \approx 28 \, {\rm fb}$

- Polarised W⁺W⁻ channels probe EFT operators
- Loop-induced (LI) channel opens up at $\mathcal{O}(\alpha_s^2)$

 $\rightarrow \text{ expect a large } \mathcal{O}(\alpha_s^2) \text{ contribution}$

Diboson Production ::: Polarised distributions

Figure: Positive lepton rapidity at NNLO

Diboson Production ::: Polarised distributions

• Polarisation fractions

TT	TL	LT	LL
48.5%	24.9%	22.1%	4.4%

 $\rightarrow~Production~is~dominated~by~W_T^+W_T^-$, especially at high energies

Figure: Positive lepton rapidity at NNLO

Diboson Production ::: Polarised distributions

• Polarisation fractions

TT	TL	LT	LL
48.5%	24.9%	22.1%	4.4%

 $\rightarrow~Production~is~dominated~by~W_T^+W_T^-$, especially at high energies

QCD corrections

order	TT	TL	LT	LL
NLO	7%	8%	9%	36%
NNLO	2%	2%	2%	9 %

- \rightarrow small except for LL
- $\rightarrow~$ distinct corrections profile for LL
- $\rightarrow~$ theoretical uncertainty $\underline{reduced}$ by 3

Figure: Positive lepton rapidity at NNLO

IOP Annual Conference 2022

Diboson Production ::: Polarised distributions (2)

QCD corrections

order	TT	TL	LT	LL
NNLO	2%	2%	2%	9%
LI	9%	3%	4%	8%

- $\rightarrow~$ distinct corrections profile for LL
- $\rightarrow~$ theoretical uncertainty $\underline{increased}$ by 2
- \implies this calls for $\mathcal{O}(\alpha_s^3)$ corrections.

Figure: Loop-induced channel corrections in lepton rapidity.

Summary

Summary

- Polarised bosons are a focused test of the Standard Model
- We provided the first two NNLO-precise studies of polarised W production
- Higher order QCD corrections are:
 - \rightarrow stable
 - $\rightarrow\,$ particularly strong for the longitudinal mode
 - \rightarrow crucial for precision studies
- Looking forward to:
 - $\rightarrow~$ theory improvements, e.g higher-order corrections to the loop-induced channel in W^+W^-
 - $\rightarrow~$ measurements in diboson processes and an update on W+j

Summary

- Polarised bosons are a focused test of the Standard Model
- We provided the first two NNLO-precise studies of polarised W production
- Higher order QCD corrections are:
 - \rightarrow stable
 - $\rightarrow\,$ particularly strong for the longitudinal mode
 - \rightarrow crucial for precision studies
- Looking forward to:
 - $\rightarrow~$ theory improvements, e.g higher-order corrections to the loop-induced channel in W^+W^-
 - $\rightarrow~$ measurements in diboson processes and an update on W+j

Thank you for your attention!

Appendix

Reference frames

• *Helicity frame* is a rest frame of the W-boson, where z-axis is directed along the boson momentum in lab frame, and x-axis belongs to the plane containing boosted parton momenta \vec{p}'_1, \vec{p}'_2 .

Helicity frame [1103.5445]

• *Collins-Soper (CS) frame* is a rest frame of the W-boson in which the z-axis is taken to bisect the opening angle between incoming proton momenta $\vec{p_1}, \vec{p_2}$, and the v-axis is along the direction of $\vec{p}_1 \times \vec{p}_2$. The azimuthal angle is measured from the x-axis which lies in the scattering plane [hep-ph/0604208].

Collins-Soper frame [1708.00008]

Method: Double-pole approximation

- A selected **on-shell projection** defined on-shell sub-amplitudes (we choose to preserve leptonic angles in the decay frames, and boson angles in the diboson frame).
- Cross-term amplitude contributions coming from $A_{\alpha}A_{\tilde{\alpha}}$ terms create **interferences** for cross sections.

W in Association With One Jet: Off-shell and interference effects

• Off-shell effects mean that on-shell approximation/projection does not agree with off-shell calculation:

$$\frac{d\sigma_{\text{off-shell}}}{dX} \neq \frac{d\sigma_{\text{unpol}}}{dX}$$

• Interference effects cause polarised sum to break down:

$$\frac{d\sigma_{\text{unpol}}}{dX} \neq \frac{d\sigma_0}{dX} + \frac{d\sigma_T}{dX} \equiv \frac{d\sigma_{\text{pol.sum}}}{dX}$$

- Regions suitable for polarisation fits:
 - $\rightarrow \Delta \phi(\ell, j_1) > 0.3$
 - $\rightarrow~25 < p_{\mathrm{T},\ell} < 70\,\mathrm{GeV}$

$$\rightarrow \cos \theta_{\ell}^* > -0.75$$

 $\rightarrow |y_j| < 2 \,\mathrm{GeV}$

Diboson Production: Approximations

Unpolarised narrow-width (NWA), double-pole (DPA) approximations, and off-shell.