Decoding Dark Matter at future e⁺e⁻ colliders

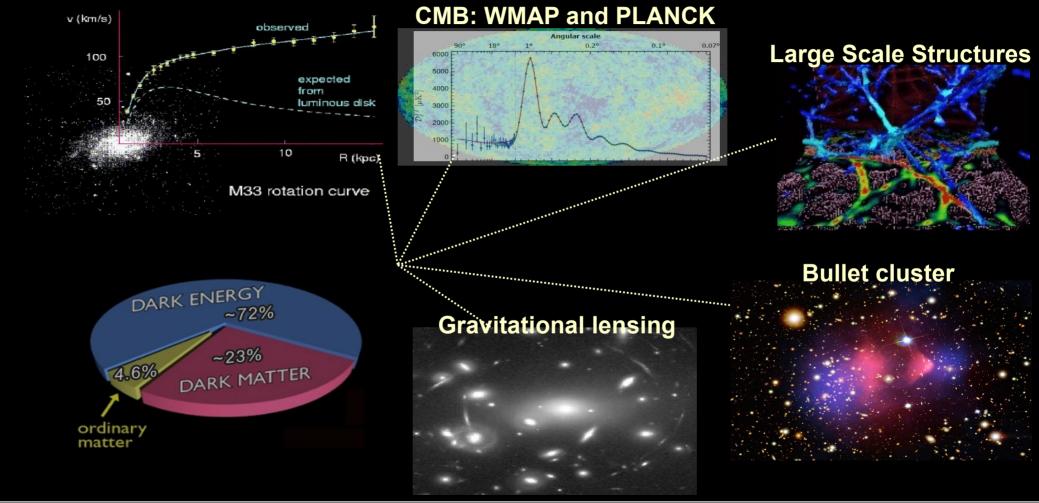
Alexander Belyaev

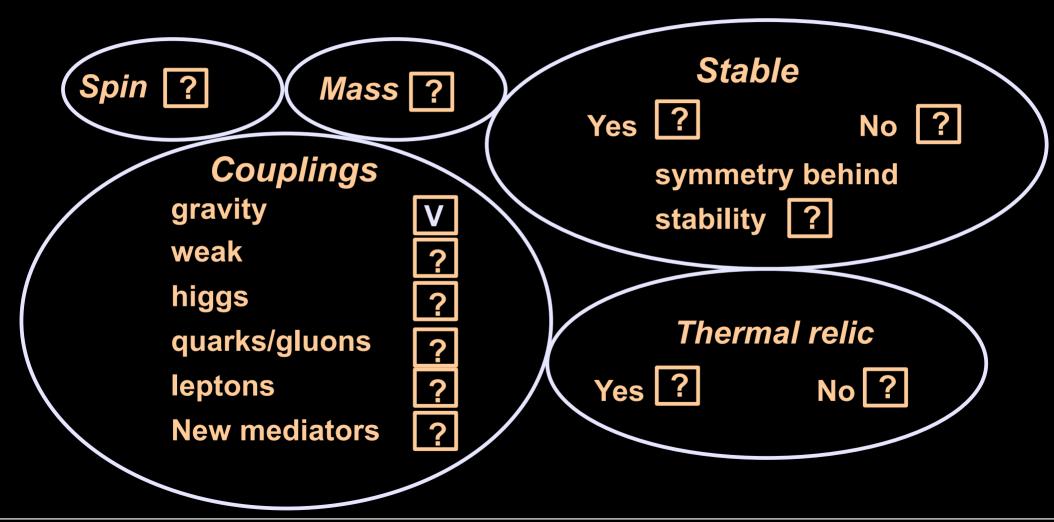
Southampton University & Rutherford Appleton Laboratory

Ilya Ginzburg, Dan Locke, Arran Freegard, Alexaner Pukhov, AB arXiv:2112.15090

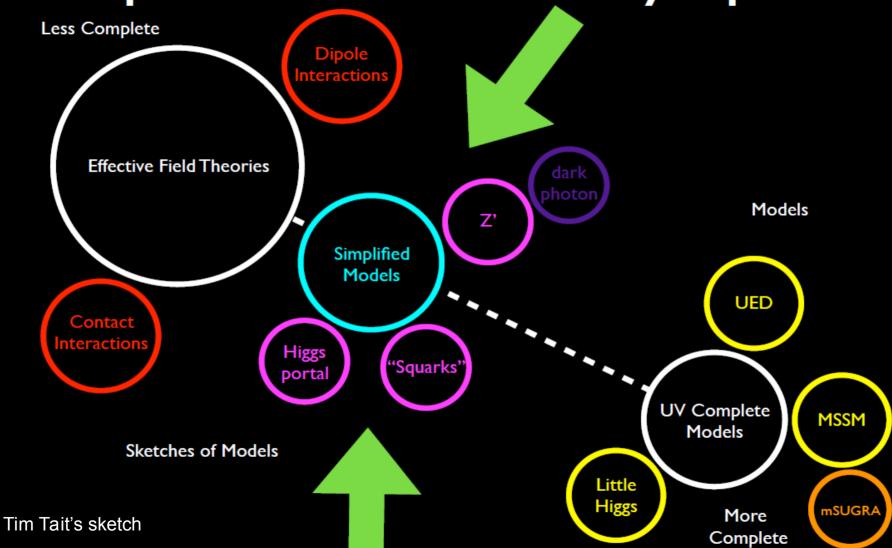
IOP Institute of Physics

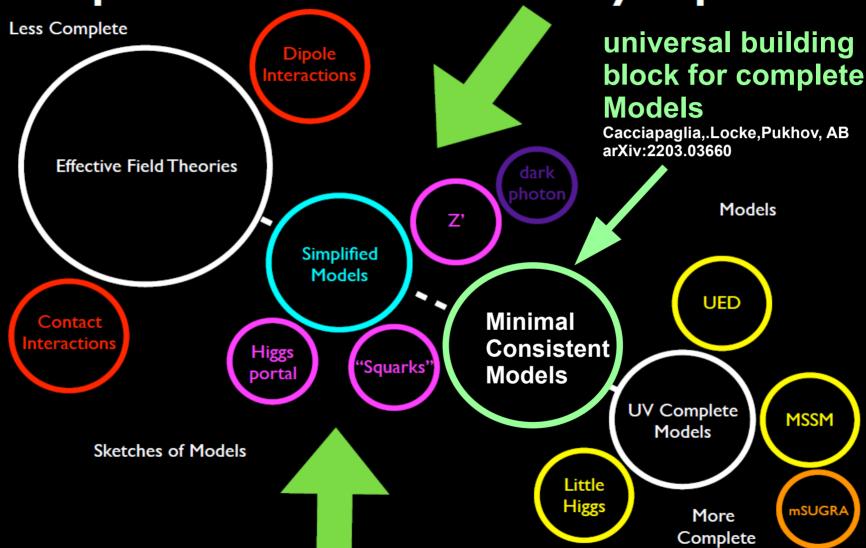
HEPP & APP Annual Conference 2022


3-6 April 2022, Rutherford Appleton Laboratory STFC, Oxfordshire, UK

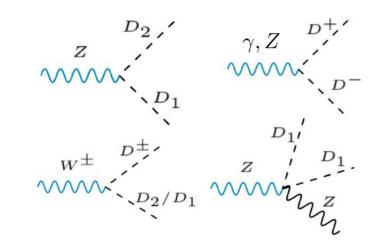


The existence of Dark Matter is confirmed by several independent observations at cosmological scale


Galactic rotation curves

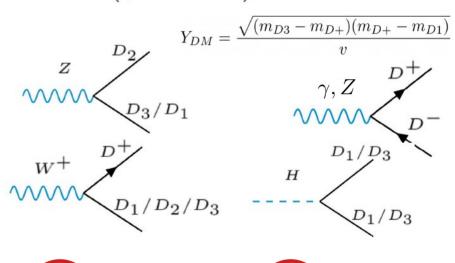

DM is very appealing even though we know almost nothing about it!

Spectrum of Theory Space


Spectrum of Theory Space

Inert 2 Higgs Doublet model $\tilde{S}_{1/2}^{1/2}$ (i2HDM)

$$\mathcal{L}_{\phi} = |D_{\mu}\phi_1|^2 + |D_{\mu}\phi_2|^2 - V(\phi_1, \phi_2)$$


$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}, \quad \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^+ \\ D_1 + iD_2 \end{pmatrix}$$

$$(M_{D1},)$$
 $(\Delta M^+) = M_{D^+} - M_{D1},$ $(\Delta M^0) = M_{D2} - M_{D^+}$

Minimal fermion DM model $\widetilde{F}_{1/2}^{1/2}\widetilde{M}_{0}^{0}$ (MFDM)

$$\mathcal{L}_{FDM} = \mathcal{L}_{SM} + ar{\psi}(iD - m_{\psi})\psi + rac{1}{2}ar{\chi_s^0}(i\partial - m_s)\chi_s^0 - (Y_{\scriptscriptstyle DM}(ar{\psi}\Phi\chi_s^0) + h.c.) \ \psi = \left(rac{\chi^+}{\sqrt{2}}\left(\chi_1^0 + i\chi_2^0
ight)
ight)$$
 Majorana singlet χ_s^0

$$\Delta M^{+} = M_{D^{+}} - M_{D1}, \quad \Delta M^{0} = M_{D2} - M_{D^{+}} \quad M_{D1} \quad \Delta M^{+} = M_{D^{+}} - M_{D1}, \quad \Delta M^{0} = M_{D3} - M_{D^{+}}$$

Benchmarks and tools

- CalcHEP+PYTHIA8+Delphes3
- ISR+Beamstrahlung (CalcHEP)

ILC 500 Gev design (from ILC TDR)

Parameter	Benchmarks	BP1	BP2			
	M_D	60	60			
	M_{+}	160	120			
	M_{D_2}	160.85	120.85			
I2HDM p	parameters					
	λ_{345}	6.5×10^{-4}	7.0×10^{-4}			
	λ_2	1.0	1.0			
DM observables						
Ωh^2	SDM	0.111	0.112			
2211	FDM	0.108	0.109			
$\sigma^p_{SI}[exttt{pb}]$	SDM	6.17×10^{-13}	6.17×10^{-13}			
	FDM	1.67×10^{-11}	1.65×10^{-11}			

```
ISR scale = 1.00E+00*sqrtS

Beamstralung ON

Bunch x+y sizes (nm) = 500.0

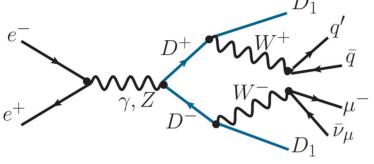
Bunch lenght (mm) = 0.300

Number of particles = 2.0e+10

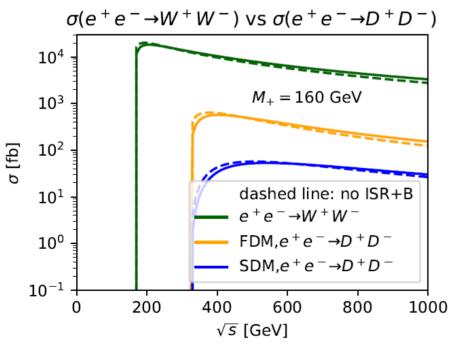
* N_gamma = 1.71

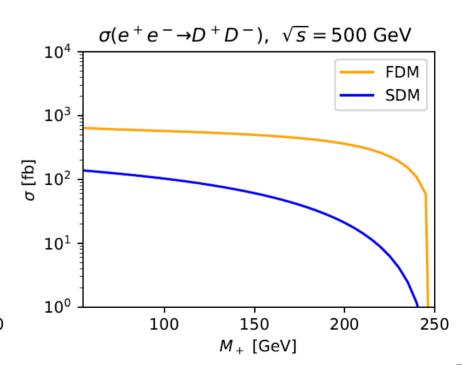
* Upsilon = 0.06

Beamstrahlung F(x) plot


Beamstrahlung F(x)*(1-x)*(2/3)
```

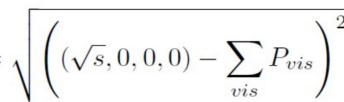
- MicrOMEGAs
 - relic density
 - DM DD and ID detection
 - Invisible Higgs decay (under control the small value of $M_{D2}-M_{+}$ split)
- CheckMATE
 - test against LHC current limits

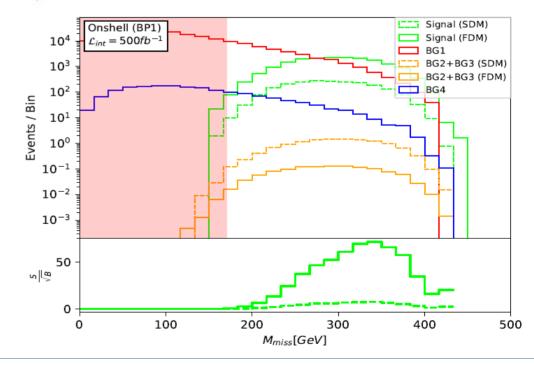



The process under study

$$e^+e^- \to D^+D^- \to D_1D_1W^+W^- \to D_1D_1q'\bar{q}\mu\bar{\nu}$$

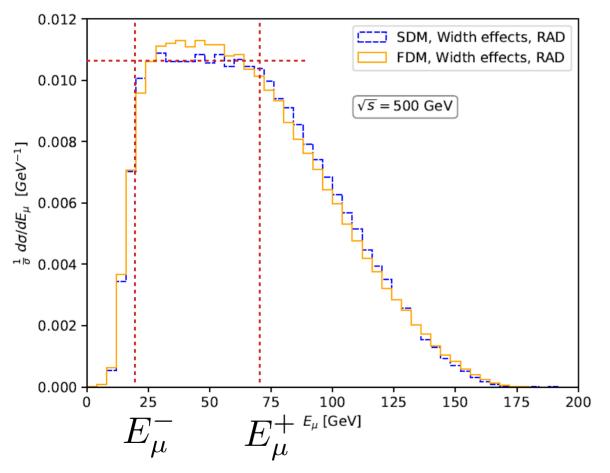
$$\sigma_{\gamma\gamma} = \begin{cases} \sigma_0 \beta_+ \left[1 + \frac{2M_+^2}{s} \right] & \text{if } s_D = \frac{1}{2} \\ \sigma_0 \frac{\beta_+^3}{4} & \text{if } s_D = 0 \end{cases}$$




Observables

$$e^+e^- \to D^+D^- \to D_1D_1W^+W^- \to D_1D_1q'\bar{q}\mu\bar{\nu}$$

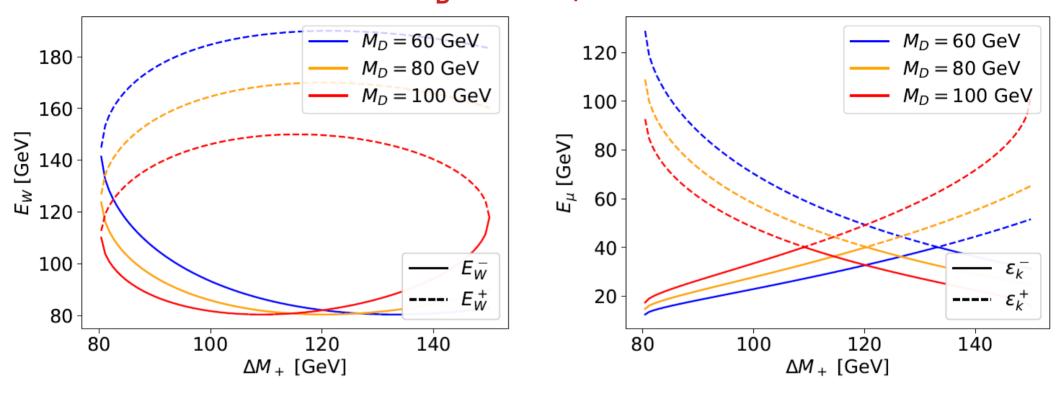
- Di-jet + muon + MET signature
 - \sqrt{S} Is fixed (up to ISR+BRM effects)
 - ${
 m M}_{
 m miss}$ can be reconstructed: $M_{miss}=\sqrt{2}$


- Missing transverse momentum, E_T
- charged lepton energy (muon), E_{μ}
- angle of reconstructed W-boson in the LAB system, $\cos heta_W$
- the energy of W-boson reconstructed from the di-jet pair, E_{ij}
- The cross section itself, which includes spin factors

W-boson and charged lepton energy distributions

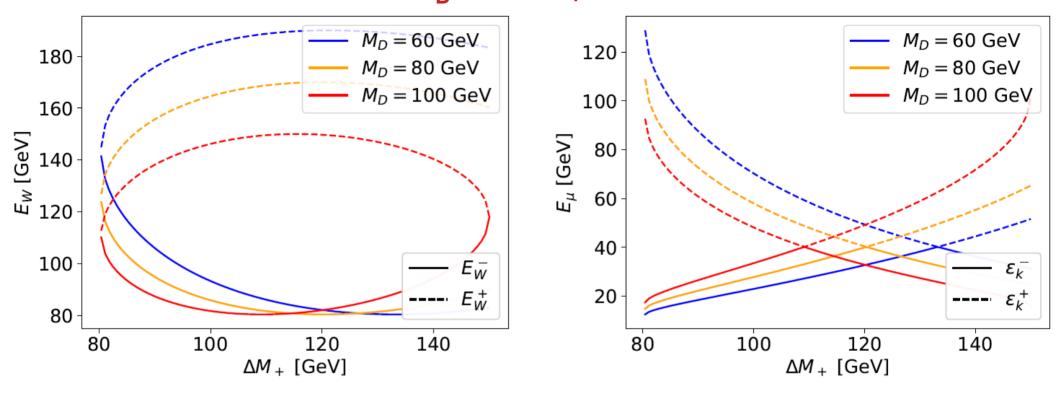
$$e^+e^- \to D^+D^- \to D_1D_1W^+W^- \to D_1D_1q'\bar{q}\mu\bar{\nu}$$

 W energy distribution (from D⁺ decay) have edges


$$E_W^{(\pm)}(M_W^*) = \gamma_D(E_W^D \pm \beta_D p_W^D)$$

which lead to kinks in muon energy distributions

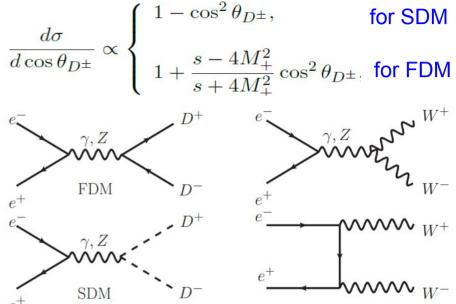
$$E_{\mu}^{(\pm)} = \frac{E_W^{(-)} \pm \sqrt{(E_W^{(-)})^2 - M_W^2}}{2}$$


- between these kinks distribution is approximately flat
- the positions of the upper edge of the di-jet (W) energy distribution and the lower kink in the muon energy distribution give two equations to determine M_n and M+

Kinks and M_D and M_L determination

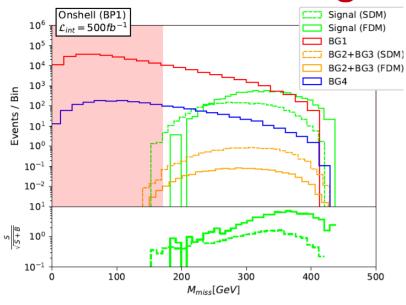
- Either of two edges in E(W) or in E(muon) distributions can be used to determine M_D and M+
- For certain D⁺ and DM masses, edges either in E(W) or in E(mu) can overlap

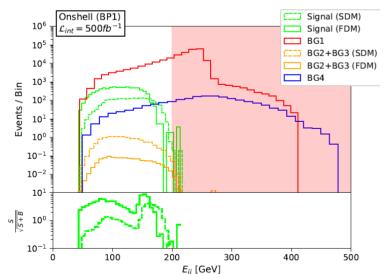

Kinks and M_D and M_L determination


- Either of two edges in E(W) or in E(muon) distributions can be used to determine M_D and M+
- For certain D⁺ and DM masses, edges either in E(W) or in E(mu) can overlap
- But the edges in E(W) and E(muon) never overlap simultaneously:
 if distance between edges in E(W) distribution is small, the distance between edges in E(mu) is maximal and vice versa so the M_D and M+ can always be determined

The role of the ILC in decoding the spin of DM

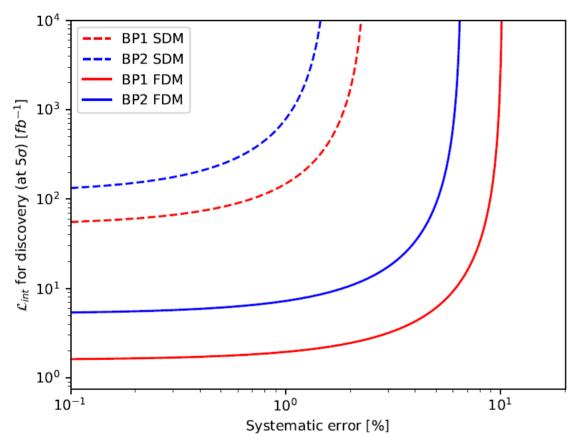
 $e^+e^- \rightarrow D^+D^- \rightarrow DM \ DM \ W^+W^- \rightarrow DM \ DM \ jj \ \mu \ \nu$




AB, Ginzburg, Locke, Freegard, Pukhov arXiv:2112.15090

- The angular W-boson distribution (either for real or virtual W) is found to be very important discriminator between DM spin as well as the main BG
- The shape of angular W-boson distribution is the same for two benchmarks for DM of the same spin

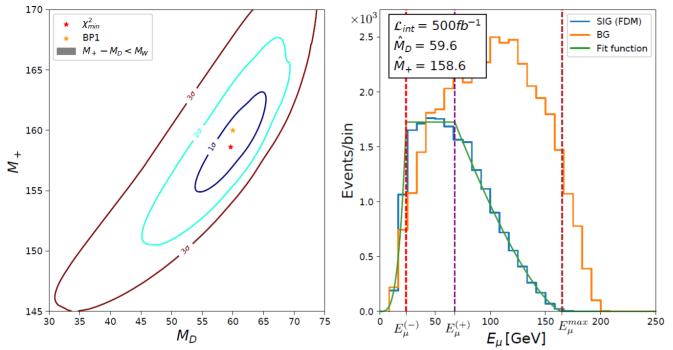
Signal vs BG analysis


SM BG cut flow							
Cut	BG1	BG4	B_I	ε_{B_I}			
Parton Level	6.600×10^5	1.947×10^4	6.795×10^5				
Reco Level	2.921×10^5	1.842×10^{3}	2.939×10^{5}	0.433			
$M_{miss} > 170$	4.053×10^4	4.881×10^{2}	4.101×10^4	0.140			
$E_{jj} < 200$	3.718×10^4	2.993×10^{2}	3.748×10^4	0.914			
$ \cos\theta_{jj} < 0.9$	1.902×10^4	2.332×10^{2}	1.925×10^4	0.514			
$ \cos\theta_{\mu} < 0.9$	1.456×10^4	1.981×10^{2}	1.476×10^{4}	0.767			

Cutflow for the SM BG (BG1 and BG4), which are BP independent

$\alpha(\delta_{sys})$	for the 500 fb^{-1}	BP1 cut flow
------------------------	-------------------------------	--------------

				SDM			
Cut	S	6 -	P	6-	$(S+B_{II})$	$\alpha(a)$	$\delta_{sys})$
Cut	3	ε_S	B_{II}	$\varepsilon_{B_{II}}$	$\overline{B_I}$	$\alpha(0)$	$\alpha(0.01)$
Parton Level	4.519×10^{3}	_	16.55	_	0.007	5.464	0.589
Reco Level	2.185×10^{3}	0.484	12.56	0.759	0.007	4.016	0.623
$M_{miss} > 170$	2.182×10^{3}	0.999	12.52	0.996	0.054	10.50	3.411
$E_{jj} < 200$	2.182×10^{3}	1.000	12.49	0.998	0.059	10.96	3.663
$ \cos \theta_{jj} < 0.9$	2.132×10^{3}	0.977	10.64	0.852	0.111	14.58	5.921
$ \cos\theta_{\mu} < 0.9$	2.027×10^{3}	0.951	9.587	0.901	0.138	15.65	6.816
				FDM			
Parton Level	3.556×10^{4}	_	1.540		0.052	42.06	4.448
Reco Level	1.848×10^{4}	0.520	1.185	0.769	0.063	33.06	5.017
$M_{miss} > 170$	1.845×10^{4}	0.999	1.174	0.991	0.450	75.67	22.01
$E_{jj} < 200$	1.844×10^{4}	1.000	1.168	0.994	0.492	78.00	23.18
$ \cos \theta_{jj} < 0.9$	1.651×10^{4}	0.895	0.946	0.810	0.858	87.30	30.20
$ \cos\theta_{\mu} < 0.9$	1.542×10^{4}	0.934	0.851	0.899	1.045	88.77	32.43


Signal vs BG analysis

$$\alpha(\delta_{sys}) = \frac{S}{\sqrt{S+B} + \delta_{sys}(S+B)}$$

		Luminosity required for discovery (at 5σ)/ fb^{-1}			
		$\alpha(0)$	$\alpha(0.01)$		
SDM	BP1	51.1	149.		
	BP2	117.	789.		
FDM	BP1	1.59	1.95		
FDM	BP2	5.21	7.25		

Mass determination

		$500 fb^{-1}$	$20ab^{-1}$
FDM	M_D	$58.4^{+5.7}_{-6.0}$	$57.6^{+1.9}_{-2.2}$
	M_{+}	$158.1_{-3.7}^{+4.0}$	$157.4_{-2.4}^{+2.7}$
SDM	M_D	$66.0^{+19.2}_{-64.3}$	$64.3^{+3.2}_{-6.1}$
	M_{+}	$161.3_{-52.8}^{+14.7}$	$161.0_{-3.9}^{+3.3}$

		$500 fb^{-1}$	$20ab^{-1}$
FDM	M_D	$60.0^{+0.7}_{-0.8}$	$60.0^{+0.1}_{-0.1}$
	M_{+}	$120.0_{-1.7}^{+1.5}$	$120.0_{-0.3}^{+0.2}$
SDM	M_D	$60.0^{+24.1}_{-19.7}$	$60.0^{+4.4}_{-1.3}$
	M_{+}	$120.0_{-45.9}^{+22.3}$	$120.0_{-2.7}^{+2.3}$

$$f(E_{\mu}) = \begin{cases} b \left(\frac{E_{\mu}}{E_{\mu}^{(-)}}\right)^{a} & \text{if } E_{\mu} \leq E_{\mu}^{(-)} \\ \\ b & \text{if } E_{\mu}^{(-)} < E_{\mu} < E_{\mu}^{(+)} \\ \\ b \left(1 - \frac{E_{\mu} - E_{\mu}^{(+)}}{E_{\mu}^{max} - E_{\mu}^{(+)}}\right)^{c} & \text{if } E_{\mu}^{(+)} \leq E_{\mu} < E_{\mu}^{max} \\ \\ 0 & \text{if } E_{\mu} \geq E_{\mu}^{max} \end{cases},$$

The profile χ^2 is calculated by minimising over nuisance parameters a, b, c.

The minimum of this profiled χ^2 corresponds to the global minimum for the fit, when M_D, M_+ are also allowed to vary.

Spin discrimination

	\mathcal{L}_{int} to differentiate at 95% CL $/fb^{-1}$				
	Shape only Shape and cross-section				
Assumed nature	SDM	FDM	SDM	FDM	
BP1	9.8×10^{2}		1.9	3.4	
BP2	2.3×10^{3}	1.2×10^{2}	9.6	13.	

We assume that the mass of the DM is precisely known: a more complete treatment would involve a simultaneous fit of mass and spin.

Events are generated with the model assigned to 'Assumed nature', before statistical comparison with the alternative model is conducted.

We perform the analysis for two cases:

- 1) using only the shape: signal strength becomes a nuisance parameter μ
- 2) using the signal strength predicted by the specific model realisations.

Result: the luminosity required to exclude a given hypothesis at the expected 95% CL

Conclusions and Outlook

- Future e⁺e⁻ colliders have unique power to determine the properties of DM, including its spin!
 - Two minimal models with DM spin ½ and 0 as an example of the case study
- New results: the power of E(mu), E(W), $Cos(\Theta_W)$ and missing mass to
 - discover 100 GeV FDM (SDM) with the few (hundred) inverse fb integrated luminosity
 - determine mass of DM with up to a percent accuracy
 - discriminate DM spin (especially Cos(Θ_W))
 - the edges of E(mu), E(W) distributions are very complementary: they never overlap simultaneously, so the M_D and M+ can always be determined
- Next step: vector DM case

Thank you!

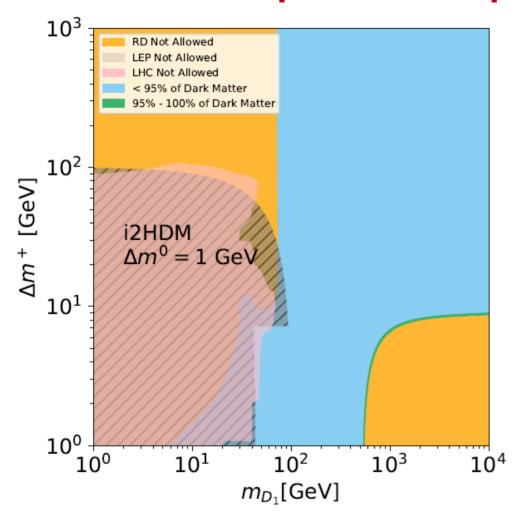
Backup slides

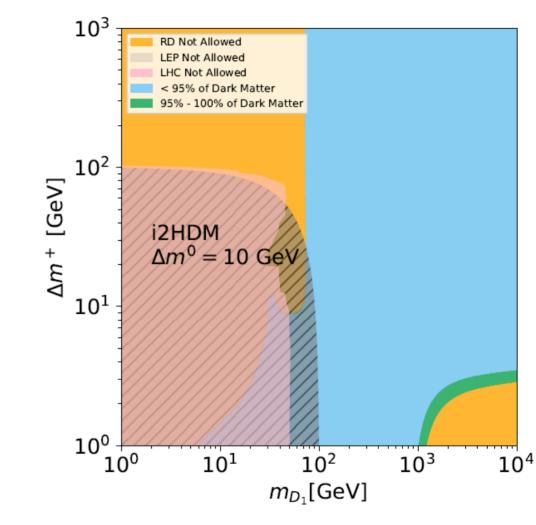
It is convenient to use the cross section for SM process

$$\sigma_0 \equiv \sigma(e^+e^- \to \gamma \to \mu^+\mu^-) = 4\pi\alpha^2/3s$$

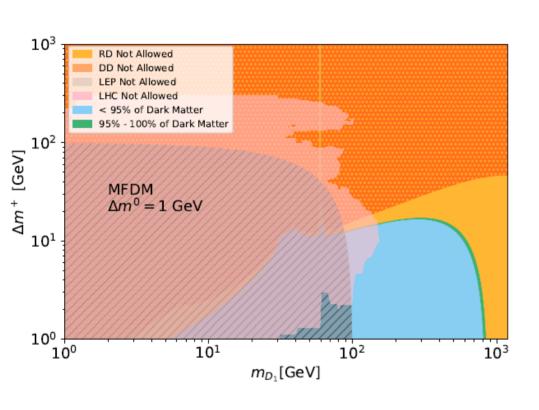
as a normalizer for the cross sections of the $e^+e^- \to D^+D^-$ processes under study. For γ -factors and velocities of D^+ ,

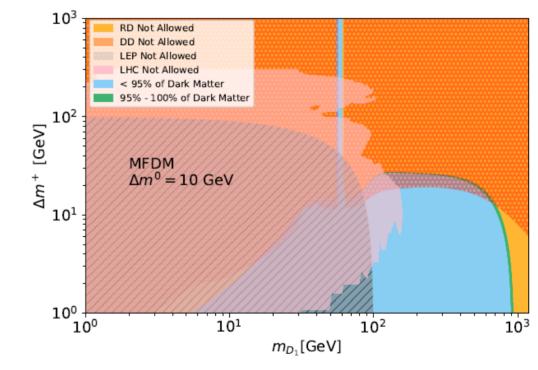
$$\gamma_{+} = \frac{\sqrt{s}}{2M_{+}}, \quad \beta_{+} = \sqrt{1 - 4M_{+}^{2}/s}$$


the QED cross section of $e^+e^- \to D^+D^-$ process from the squared amplitude with the photon exchange only is given by


$$\sigma_{\gamma\gamma} = \begin{cases} \sigma_0 \beta_+ \left[1 + \frac{2M_+^2}{s} \right] & \text{if } s_D = \frac{1}{2} \\ \sigma_0 \frac{\beta_+^3}{4} & \text{if } s_D = 0 \end{cases},$$

while the total cross section is given by


$$\sigma = \sigma_{\gamma\gamma} + \sigma_{\gamma Z} + \sigma_{ZZ} = \sigma_{\gamma\gamma} \left[1 + \frac{\kappa_{\gamma Z}}{1 - \frac{M_Z^2}{s}} + \frac{\kappa_{ZZ}}{\left(1 - \frac{M_Z^2}{s}\right)^2} \right] ,$$


i2HDM parameter space: the current status

MFDM parameter space: the current status

