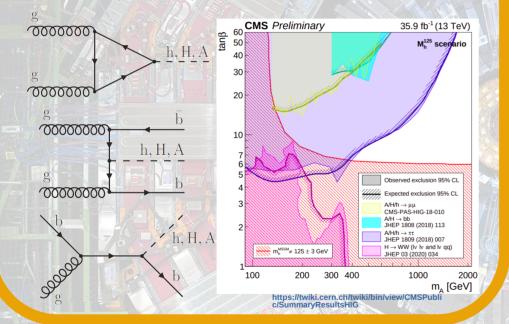
CMS Experiment at the LHC, CERN Data recorded: 2018-Jul-17 03:21:01.157638 GMT Run / Event / LS: 319756 / 2934016220 / 1850

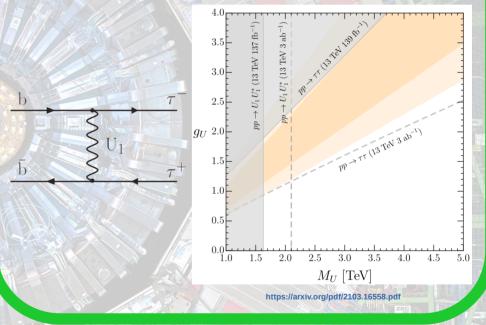
Searches for new physics in the di-tau final states at CMS

George Uttley Imperial College London IOP 2022 - 04/04/22


Introduction

Imperial College London

CMS/

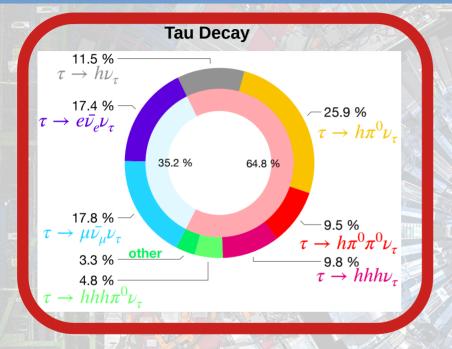

Additional neutral Higgs bosons

Predicted by two Higgs doublet models (including the MSSM). MSSM predicts h, H and A.

Vector Leptoquarks

Theorised to simultaneously explain the b anomalies.

Both theories offer signals in high p_{τ} di-tau tails with possible additional b-jets.


2/12

04/04/22

Search for NP in di-tau final states at CMS

Di-tau Reconstruction

Imperial College CMS/ London

- Taus decay leptonically (e,μ) or hadronically (τ_{h}) . •
- We search for 4 di-tau final states: $\tau_{h}\tau_{h}$, $e\tau_{h}$, $\mu\tau_{h}$ and $e\mu$.
- Hadronic taus selected by the DeepTau algorithm.

Finding Taus in CMS Detector MUON MUON DETECTOR DETECTOR MAGNET MAGNET u[±] HCAL HCAL lν ECAL ECAL TRACKER TRACKER $\sqrt{\pi^0}$ τ± $\tau^{\pm} \rightarrow \rho^{\pm} \nu^{\tau} \rightarrow \pi^{\pm} \pi^0 \nu^{\tau}$ $\tau^{\pm} \to \mu^{\pm} \nu^{\mu} \nu^{\tau}$

Search for NP in di-tau final states at CMS

https://arxiv.org/pdf/2201.08458.pdf

g.uttley19@imperial.ac.uk

04/04/22

3/12

Categories and Discriminators

Medium-D_c

Tight-m_T

 $ght-m_T$

b-tag

High-D

- For the model independent resonance search: Use both low and high mass analysis
- Vector Leptoquark search: Use only high mass analysis.
- MSSM search: Use high mass analysis combined with the CMS SM H→TT analysis. http://cds.cem.ch/record/2725590?In=en

$ au au ightarrow { m e}\mu$		b-tag dium- D_{ζ} High- D_{ζ}		$\frac{D-\text{tag}}{\text{Iedium-}D_{\zeta} \text{High-}D_{\zeta}}$	au au au au	
$\tau \tau \to e \tau_h$	Loose-m _T	Tight-m _T	Loose-m _T	Tight-m _T		
au au au au au au	Loose- $m_{\rm T}$	Tight-m _T	Loose- $m_{\rm T}$	Tight-m _T		
$ au au o au_{ m h} au_{ m h}$					$ au au o au_{\rm h}$	$\tau_{\rm h}$ $\frac{50}{100}$
$t\bar{t}(e\mu)$						
	Si	gnal region (Sl		$t\bar{t}(e\mu)$		
	Ce	ontrol region		3111		Signal r
						Control

Low Mass Analysis (m, < 250 GeV)

 $p_{\pi} \leq 50 \text{ GeV}$

 $p_{\rm T} \ge 200 {\rm GeV}$

 $p_{-} < 50 \text{ GeV}$

 $50 \le p_{\rm T} \le 100 \, {\rm GeV}$

 $100 \le p_{\rm T} \le 200 \, {\rm GeV}$

No b-tag

High-De

 $Medium - D_c$

Tight-m_T

 $\tau \tau \to e \mu$

 $p_{\pi} < 50 \text{ GeV}$

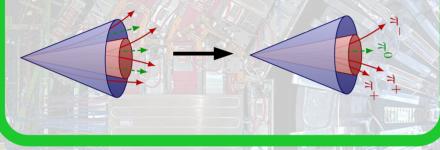
 $50 \le p_{\pi} \le 100 \text{ GeV}$

 $100 \le p_{\tau} \le 200 \text{ GeV}$

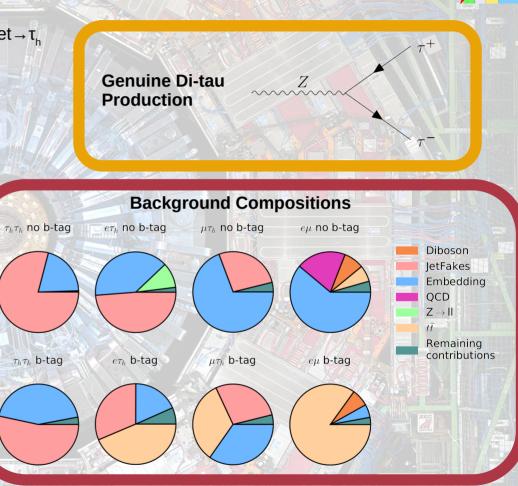
 $p_{\rm T} \ge 200 {\rm ~GeV}$

g.uttley19@imperial.ac.uk

s://iopscience.iop.org/article/10.108 12-6596/513/2/022035/pdf


Search for NP in di-tau final states at CMS

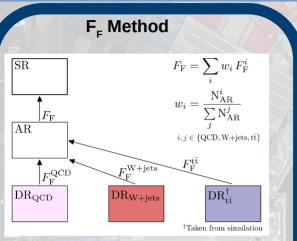
Background Modelling


Imperial College London

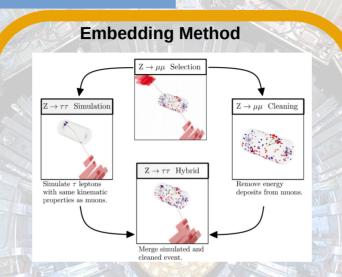
The most dominant backgrounds are from genuine di- τ pairs or jet $\rightarrow \tau_h$ misidentification.

Jets Faking Hadronic Taus

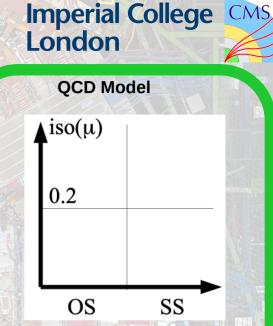
- Other backgrounds from processes with <2τ e.g. diboson, tt̄, Z→II.
- Di-t (embedding method), jet $\rightarrow \tau_h$ backgrounds (F_F method), and QCD (same sign τ pairs) are estimated from data-driven methods. ~90% of background modelling.
- Smaller remaining backgrounds estimated from MC.



5/12


04/04/22

Search for NP in di-tau final states at CMS

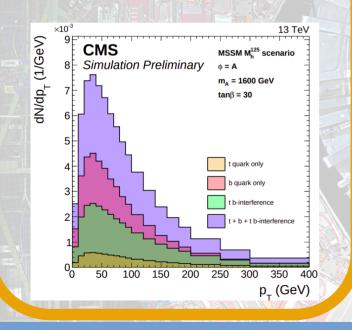

Data-Driven Methods

- Estimates all backgrounds with jets faking hadronic taus $(j \rightarrow \tau_h)$.
- Calculate weight (F_F) as the ratio of two Tau ID working points from fake t_h enriched sideband regions.
- Apply weights to data passing alternative working point.

- Estimates backgrounds with real di- τ pairs, mainly $Z \rightarrow \tau \tau$, but a smaller contribution from tt and diboson.
- Replace muons selected in data with simulated τ lepton decays, utilising lepton flavour universality.

- Estimated (only in the eµ) in a sideband with same sign eµ pair.
- Use correction based off muon isolation.

Search for NP in di-tau final states at CMS

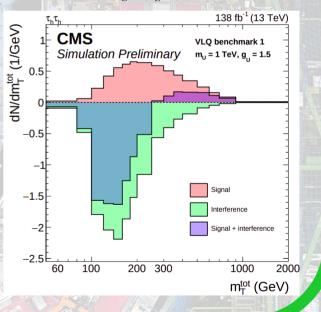

g.uttley19@imperial.ac.uk

6/12

Signal Modelling

Gluon fusion and b associated production signals

- Masses between 60 GeV and 3.5 TeV.
- p_{τ} reweighting to separate gluon fusion . loop.


04/04/22

- Vector leptoquark signal
- Look for U₁ vector leptoquark through t-channel process with mass between 1 and 5 TeV. odty

$$\mathcal{L}_{\mathrm{U}} = \frac{g_{\mathrm{U}}}{\sqrt{2}} \mathrm{U}^{\mu} \left[\beta_{\mathrm{L}}^{i\alpha} (\bar{q}_{\mathrm{L}}^{i} \gamma_{\mu} l_{\mathrm{L}}^{\alpha}) + \beta_{\mathrm{R}}^{i\alpha} (\bar{d}_{\mathrm{R}}^{i} \gamma_{\mu} e_{\mathrm{R}}^{\alpha}) \right] + \mathrm{h.c.} \quad \beta_{\mathrm{L}} = \begin{pmatrix} 0 & 0 & \rho_{\mathrm{L}}^{\mu} \\ 0 & \beta_{\mathrm{L}}^{\mu} & \beta_{\mathrm{L}}^{\mu} \\ 0 & \beta_{\mathrm{L}}^{b\mu} & \beta_{\mathrm{L}}^{b\tau} \end{pmatrix}, \quad \beta_{\mathrm{R}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_{\mathrm{R}}^{\mu} \end{pmatrix}$$

- Two benchmark (BM) scenarios considered:
 - VLQ BM 1: β_p^{bτ}=0 no RH
 - couplings
 - VLQ BM 2: β_p^{bτ}=-1 Pati-Salam-like leptoquark
- Other matrix parameters set to best fit of b anomalies.
- Interference with background also included.

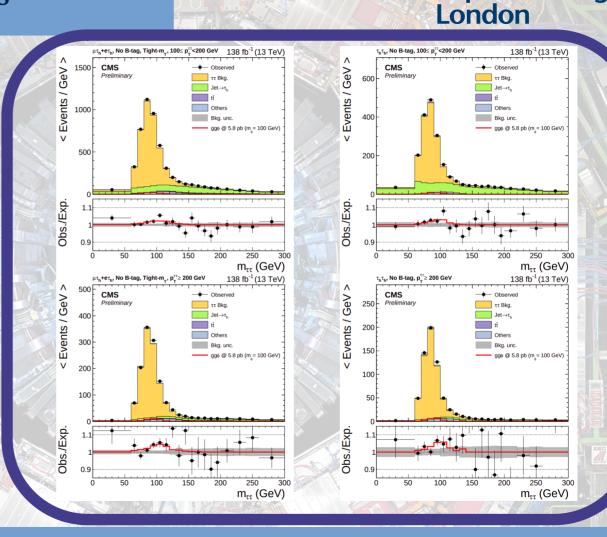
Phenomenology follows https://arxiv.org/pdf/2103.16558.pd

Imperial College

London

10 0

Search for NP in di-tau final states at CMS


g.uttley19@imperial.ac.uk

(0, 0, 0)

7/12

Results – Postfit Low Mass

- Most sensitive categories shown, with all years and semi-leptonic tau decay channels combined.
- Small excess observed in m_{π} bins around 100 GeV.
- The best fit signal strengths for gg
 is shown.
- The excess is fit well by a gg¢ resonance of mass 100 GeV.

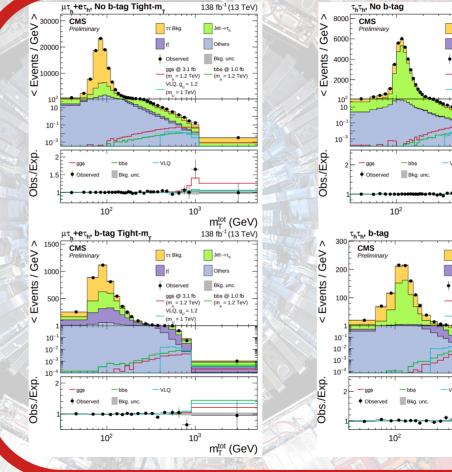
Search for NP in di-tau final states at CMS

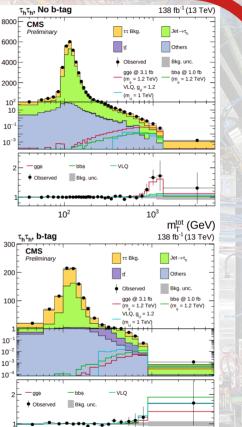
g.uttley19@imperial.ac.uk

Imperial College

CMS/

8/12


Results – Postfit High Mass


Imperial College London

CMS/

- Most sensitive categories shown, with all years and semileptonic tau decay channels combined.
- Small excess observed in high m_{τ}^{tot} bins.
- The best fit signal strengths for ggφ, bbφ and VLQ BM 1 are drawn.
- The excess is fit well by a gg¢ resonance of mass 1.2 TeV.
- The excess is not explained by the VLQ model, as b-tag categories are more sensitive.

04/04/22

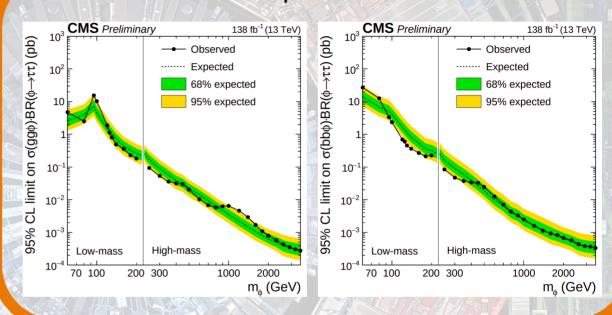
10³

m^{tot} (GeV)

Search for NP in di-tau final states at CMS

9/12

Results – Model Independent Limits and p-value Scan



• 95% CL limits are placed on gluon fusion production and production in associated with b-quarks.

04/04/22

10/12

Model Independent Limits

- The excesses observed in gluon fusion production have the below local (global) significances:
 - At 100 GeV: 3.1σ (2.7σ)
 - At 1.2 TeV: 2.8σ (2.4σ)

Search for NP in di-tau final states at CMS

Results – Model dependent Limits

MSSM

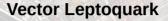
- Model dependent 95% exclusion contours shown for MSSM Scenario M_h¹²⁵.
- Red hatched band theory uncertainty.

CMS

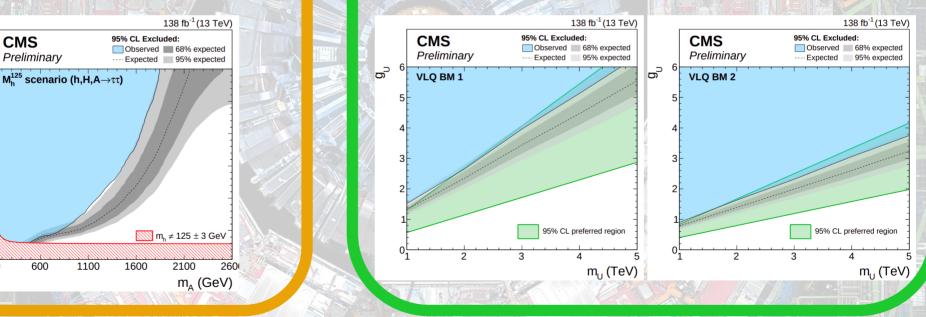
60 tanβ

50

40


30

20


10

100

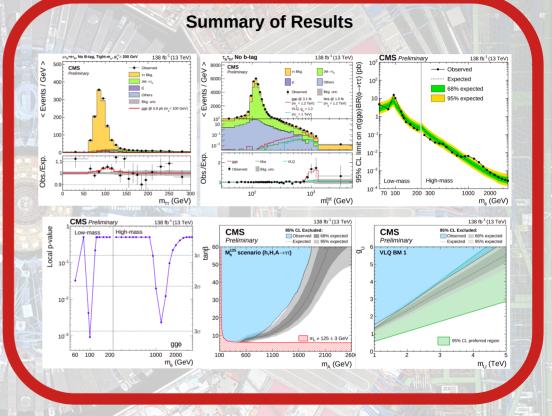
600

- The green shaded band represents the 95% CL preferred region for a vector leptoquark to explain the B-anomalies.
- Analysis sensitive to vector leptoquark that could explain the Banomalies.

Search for NP in di-tau final states at CMS

g.uttley19@imperial.ac.uk

CMS/


11/12

Results – Conclusions

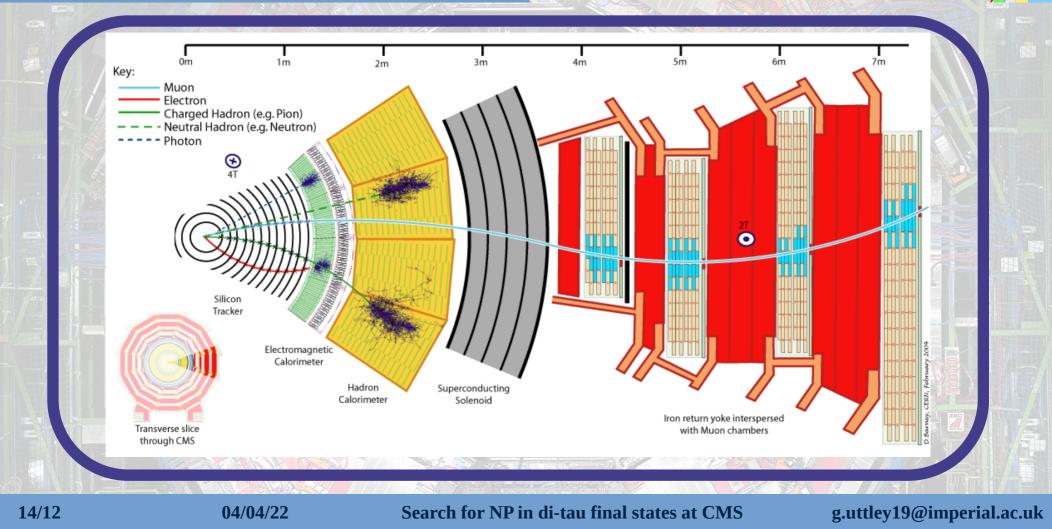
Two local excess observed for gluon fusion production but no signals with global significances larger than 3σ.

- $m_{\phi} = 100 \text{ GeV: Local (global) significance } 3.1\sigma (2.7\sigma).$
- $m_{\phi} = 1.2 \text{ TeV: Local (global) significance } 2.8\sigma (2.4\sigma).$
- The observed b associated production lies for all mass points with 2σ of the expectation.
- Strongest constraints placed on the MSSM Higgs sector.
- Excess not compatible with either leptoquark model considered as you would expect more events in b-tag categories.
- Analysis sensitive to leptoquarks that could explain the B-anomalies.
- Presentated at Moriond 2022, link to conference note here.

12/12

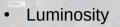
Search for NP in di-tau final states at CMS

Backup


13/12

04/04/22

Search for NP in di-tau final states at CMS

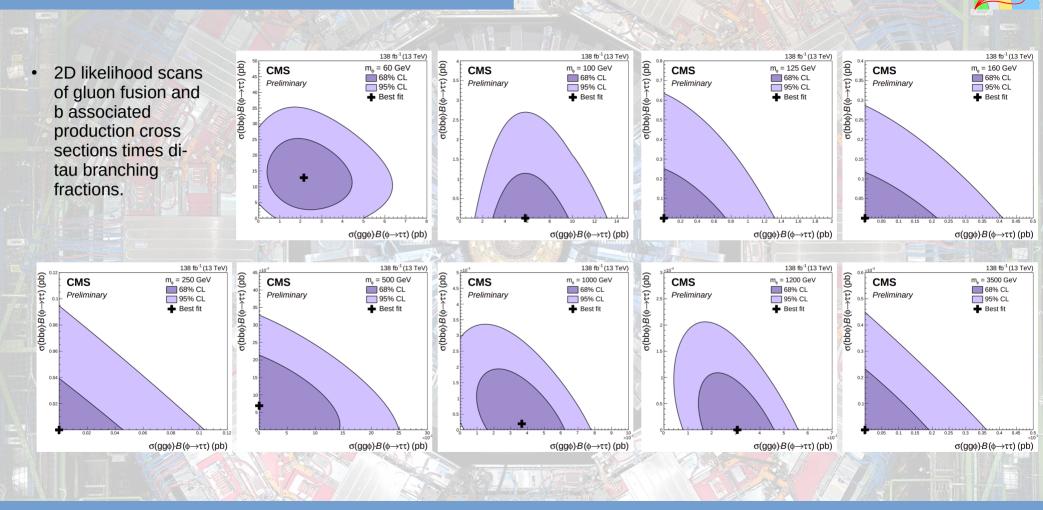

CMS Experiment

Imperial College CMS London

Systematics

Imperial College London

- e,µ id, iso and trigger efficiency and energy scales (for e only)
- Hadronic tau ID and trigger efficiency and energy scales
- b-tagging efficiency and mis-tag
- JES / JER
- Background cross sections
- $I \rightarrow \tau_h$ fake rates and energy scales
- Embedding normalization due to selection efficiency of double muon trigger
- Embedding p_T /mass shape from $Z \rightarrow \mu\mu$ closures


- Fake-factor uncertainties (statistical and systematic)
- QCD (eµ) OS/SS statistical and systematic uncertainties
- Prefiring
- Embedded MET energy scale and resolution
- MET Recoil corrections
- DY mass and pT reweighting contamination in embedded samples
- Top quark pT reweighting
- Bin-by-bin uncertainties
- Signal theory uncertainties

15/12

04/04/22

Search for NP in di-tau final states at CMS

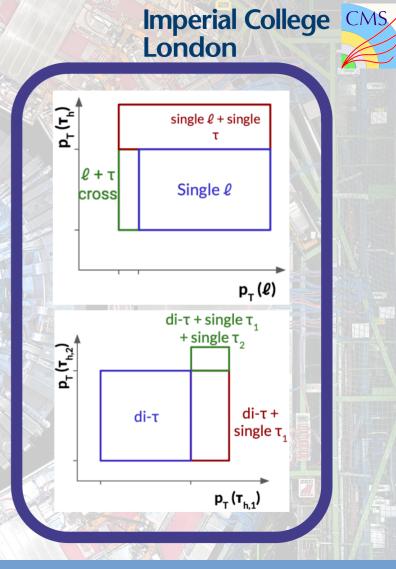
2D Likelihood Scans

Search for NP in di-tau final states at CMS

g.uttley19@imperial.ac.uk

Imperial College

London

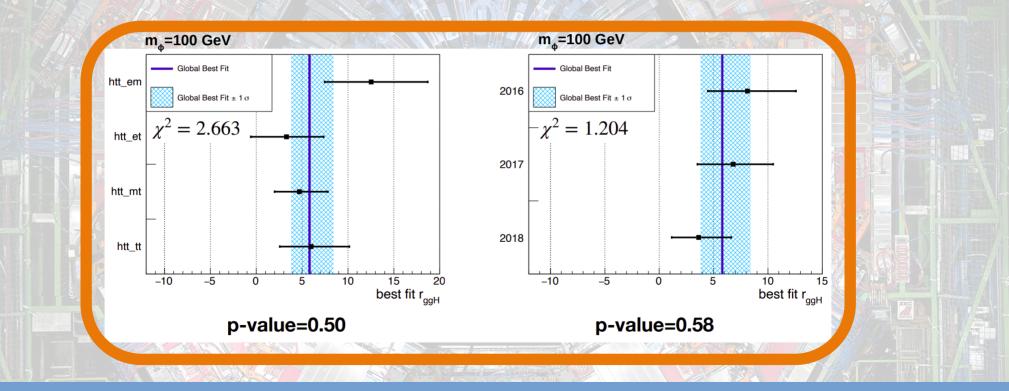

CMS/

16/12

Triggers

Trigger Selections:

- $\tau_{h}\tau_{h}$: single-tau OR double-tau
- $e\tau_h$: single-electron OR electron- τ_h cross OR single-tau
- $\mu \tau_h$: single-muon OR muon- τ_h cross OR single-tau
- eµ: Muon-electron cross
- Thresholds:
 - eµ: 2016/2017/2018: e(12) & μ(23), e(23) & μ(8)
 - eτ_h: 2016: e(25), e(24) & τ_h(20/30), τ_h(120) 2017: e(27), e(32), e(35), e(24) & τ_h(30), τ_h(180) 2018: e(32), e(35), e(24) & τ_h(30), τ_h(180)
 - μτ_h: 2016: μ(22), μ(19) & τ_h(20), τ_h(120)
 2017: μ(24), μ(27), μ(20) & τ_h(27), τ_h(180)
 2018: μ(24), μ(27), μ(20) & τ_h(27), τ_h(180)
- $\tau_{h}\tau_{h}$: 2016: $\tau_{h}(35) \& \tau_{h}(35), \tau_{h}(120)$ 2017: $\tau_{h}(35) \& \tau_{h}(35), \tau_{h}(40) \& \tau_{h}(40), \tau_{h}(120)$ 2018: $\tau_{h}(35) \& \tau_{h}(35), \tau_{h}(40) \& \tau_{h}(40), \tau_{h}(120)$


17/12

04/04/22

Search for NP in di-tau final states at CMS

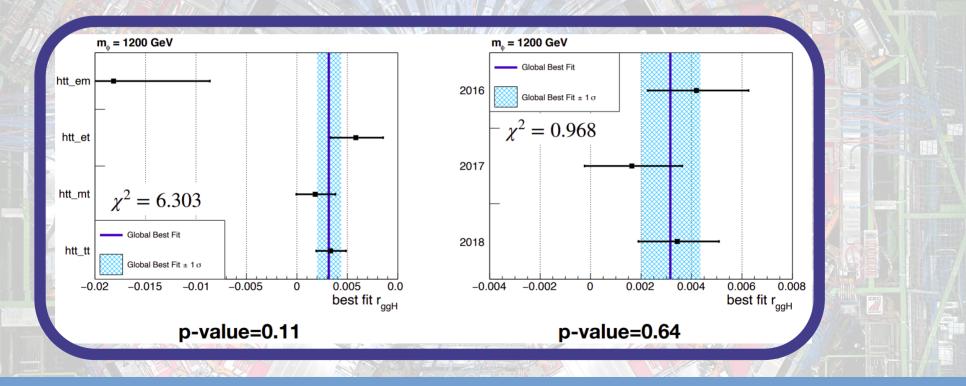
Low Mass Compatibility Plots

- $r_{ggH} = \sigma(gg\phi) \times BR(\phi \rightarrow \tau\tau) \text{ (pb)}$
- 100 GeV gluon fusion resonance shown.

04/04/22

18/12

Search for NP in di-tau final states at CMS


g.uttley19@imperial.ac.uk

Imperial College CMS

London

High Mass Compatibility Plots

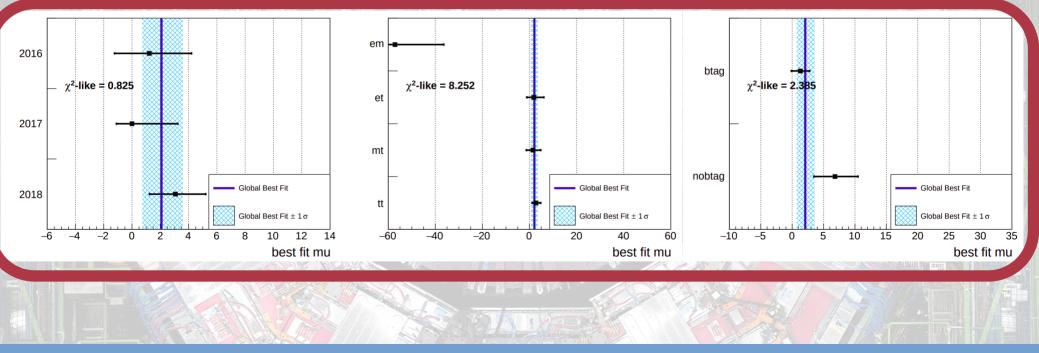
- $r_{ggH} = \sigma(gg\phi) \times BR(\phi \rightarrow \tau\tau) (pb)$
- 1.2 TeV gluon fusion resonance shown.

04/04/22

19/12

Search for NP in di-tau final states at CMS

g.uttley19@imperial.ac.uk


Imperial College CMS

London

VLQ Compatibility Plots

Imperial College CMS London

- $\mu(mu) = g_{u}^{4}$. This is defined so to allow the lower uncertainty fit to go negative in case of no crossing.
- VLQ BM 1 at 1 TeV shown.

20/12

Search for NP in di-tau final states at CMS

MSSM Limit Setting

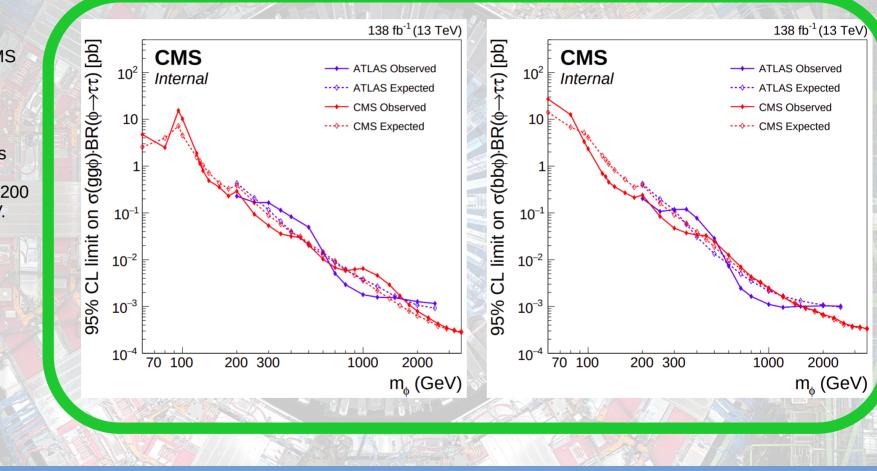
04/04/22

21/12

Imperial College London

- MSSM signal model composed as linear combination of templates for h, H, and A bosons.
- SM and BSM contribution BSM templates scaled to XS and BR prediction from benchmark scenario.
- Hypothesis Test: For each considered parameter point in the m_A, tanβ plane of the considered benchmark scenario perform hypothesis test for BSM vs. SM model prediction with the LHC test statistics.

$$q_{\mu} = -2 \frac{\mathscr{L}(\text{data} \mid \mu, \hat{\theta}_{\mu})}{\mathscr{L}(\text{data} \mid \hat{\mu}, \hat{\theta}_{\hat{\mu}})}$$

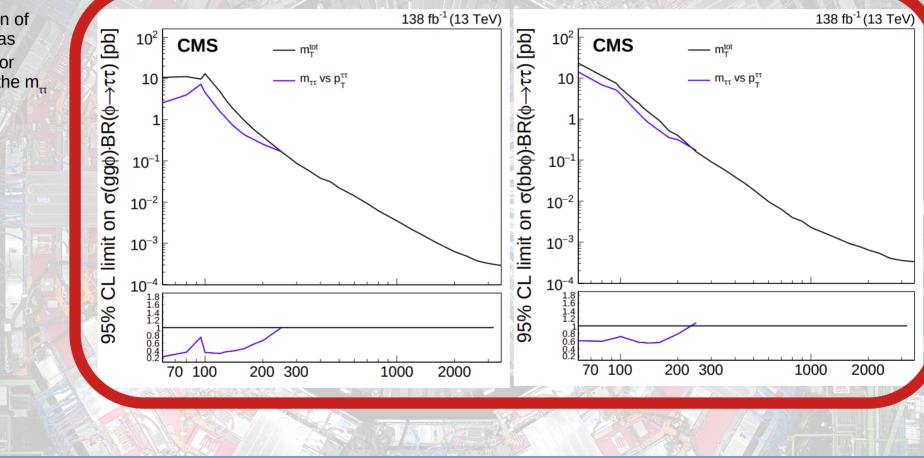

$$\mathscr{L}(\text{data} | \mu) = \mathscr{L}\left(\text{data} | \mu\left((s_{\text{h}} - S_{\text{SM}}) + S_{\text{H}} + S_{\text{A}}\right) + S_{\text{SM}} + b\right)$$

Search for NP in di-tau final states at CMS

ATLAS Comparison

- Comparison of ATLAS and CMS model independent limits.
- ATLAS analysis searches for a mass range of 200 GeV to 2.2 TeV.

22/12


Search for NP in di-tau final states at CMS

Expected Limit Sensitivity Comparison

Imperial College CMS London

Comparison of using m_T^{tot} as discriminator instead of the m_{π}^{π} vs p_T^{π}

•

23/12

04/04/22

Search for NP in di-tau final states at CMS

Results for Partial Run-2 Analysis

•

24/12

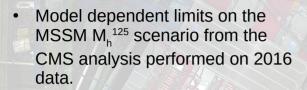
Model independent limits from the CMS 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 95% CL limit on $\sigma(bb\phi) \cdot B(\phi \rightarrow \tau \tau)(pb)$ analysis performed 95% CL limit on σ(ggφ)·B(φ→ττ)(pb) CMS Observed - Observed 10^{3} CMS on 2016 data. ---- Expected ----- Expected 10² 68% expected https://arxiv.org/pdf/1803.06553.pdf 68% expected 95% expected 10^{2} 95% expected Expected b quark only Expected t quark only 10 regior 10⁻¹ ht 10 10⁻² 10⁻² Coupling----- 10^{-3} 10^{-3} 200 300 2000 100 1000 100 200 300 1000 2000 $m_{\phi} (GeV)$ m_o (GeV)

04/04/22

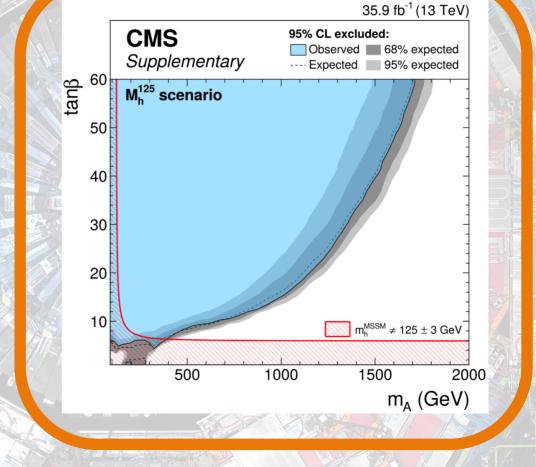
Search for NP in di-tau final states at CMS

g.uttley19@imperial.ac.uk

Imperial College


London

CMS/


Results for Partial Run-2 Analysis

Imperial College London

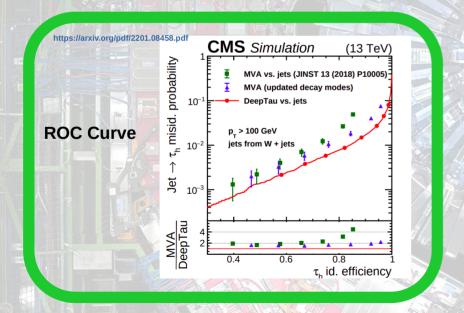
CMS/

https://arxiv.org/pdf/1803.06553.pdf

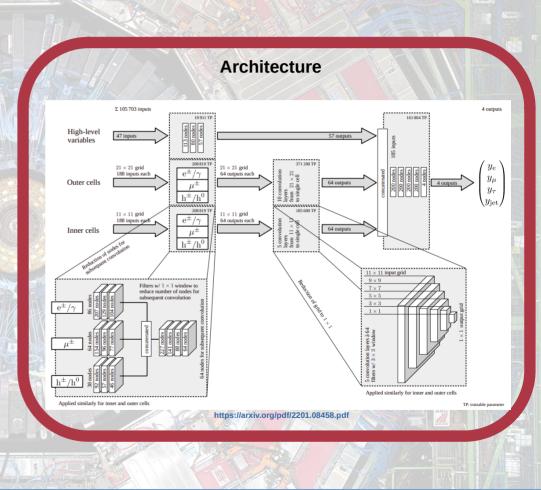
Search for NP in di-tau final states at CMS

g.uttley19@imperial.ac.uk

25/12


DeepTau Algorithm

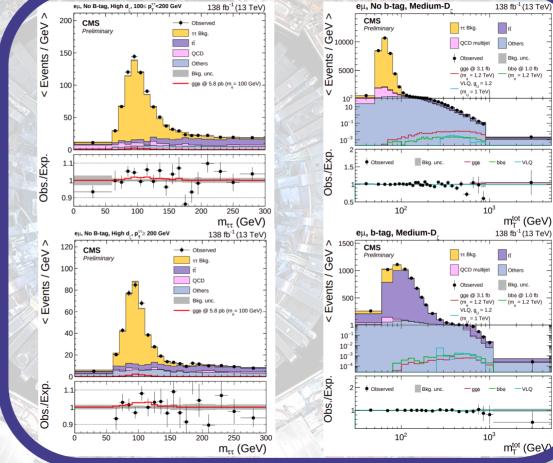
26/12



 DeepTau is a multiclass tau identification algorithm based on a convolutional deep neural network (DNN).

 DeepTau combines information from the high-level reconstructed tau features together with the low level information from the inner tracker, calorimeters and muon sub-detectors within the tau isolation cone.

04/04/22


Search for NP in di-tau final states at CMS

eµ Postfit Plots

Imperial College London

CMS/

Postfit plots for the most sensitive category in the eµ decay channel.

g.uttley19@imperial.ac.uk

VLO

27/12

Variable Definitions

Imperial College CMS London

Low Mass Analysis (m_{ϕ} < 250 GeV)

Definitions of variables us ar

Definitions of variables	No b-tag			b-tag		_	No b-tag		b-tag		
used in categorisation $ au au o e\mu$	Low- D_{ζ}	Medium- D_{ζ} High- D_{ζ}	Low- D_{ζ} Me	edium- D_{ζ} High- D_{ζ}			Medium- D_{ζ}	High- D_{ζ}	Medium- D_{ζ}	High- D_{ζ}	
and discriminators. $ au o { m e} au_{ m h}$	Loose- $m_{\rm T}$	Tight-m _T	Loose-m _T	Tight- $m_{\rm T}$		$ au au ightarrow { m e}\mu$	$p_{\rm T} < 50 \text{ GeV}$ $50 \le p_{\rm T} < 100 \text{ GeV}$	$\frac{p_{\rm T} < 50 \text{ GeV}}{50 \le p_{\rm T} < 100 \text{ GeV}}$			
$\tau \tau \rightarrow \mu \tau_{\rm h}$	Loose- $m_{\rm T}$	Tight-m _T	Loose- $m_{\rm T}$	Tight- $m_{\rm T}$			$\frac{100 \le p_{\rm T} < 200 \text{ GeV}}{p_{\rm T} \ge 200 \text{ GeV}}$	$\frac{100 \le p_{\rm T} < 200 \text{ GeV}}{p_{\rm T} \ge 200 \text{ GeV}}$			
$ au au o au_{ m h} au$	au au au au $ au au au$ $ au$						Tight- $m_{\rm T}$		Tight-m _T		
$t\bar{t}(e\mu)$	$t\bar{t}(e\mu)$ Signal region (SR)				1-1-	$\tau\tau\to e\tau_h$		$\frac{p_{\rm T} < 50 \text{ GeV}}{50 \le p_{\rm T} < 100 \text{ GeV}}$			
)				$\frac{100 \le p_{\rm T} < 200 \text{ GeV}}{p_{\rm T} \ge 200 \text{ GeV}}$			
		Control region					Tight- $m_{\rm T}$		Tight-m _T		
Discrim						$\frac{p_{\rm T} < 50 \text{ GeV}}{50 \le p_{\rm T} < 100 \text{ GeV}}$			-		
$m_{T}^{tot} = [m_{T}(\tau_{1},\tau_{2})^{2} + m_{T}(\tau_{1},E_{T}^{miss})^{2} + m_{T}(\tau_{1},E_{T}^{miss})^{2}]^{1/2}$								$\frac{100 \le p_{\rm T} < 200 \text{ GeV}}{p_{\rm T} \ge 200 \text{ GeV}}$			
	1. 1. 2										
	alle of		/ HAT SHER			$\tau\tau\to\tau_h\tau_h$		$\frac{p_{\rm T} < 50 \text{ GeV}}{50 \le p_{\rm T} < 100 \text{ GeV}}$		T	
Variable definitions:		tegory defini						$\frac{100 \le p_{\rm T} < 200 \text{ GeV}}{p_{\rm T} \ge 200 \text{ GeV}}$			
$D_z = p_z^{\text{miss}} - 0.85 p_z^{\text{obs}}$	tt(e	μ): D _ζ < -35				$t\bar{t}(e\mu)$					
$p_z^{\text{miss}} = p_z^{\text{miss}} \cdot \zeta$	Lo	w-D _z : -35 < [$D_{\chi} < 10 \text{G}$	eV			Sig	gnal region (SR)			
$p_{z}^{vis} = (p_{z}^{e} + p_{z}^{\mu}) \cdot \zeta$	Ме	dium-D _z : 10	$< D_{\chi} < 30$	D ₇ < 30 GeV			Control region				
ζ is the vector that bisects p_{z}^{e} and	p, ^µ Hig	μ High-D ₇ : D ₇ > 30 GeV				2	Discrimi	nator:	ttns://ionscience.i	ion org/article/10 108	
$m_{T}(A,B) = [2p_{T}^{A}p_{T}^{B}(1-\cos\Delta\phi^{AB})]^{1/2}$	Tig	ht- m_{τ} : $m_{\tau}(e/$	μ,E _τ ^{miss}) <	,E, ^{miss}) < 40 GeV			DISCRIMINATOR: https://iopscience.iop.org/article/10.108 8/1742-6596/513/2/022035/pdf m_ (SVFit mass)				
	Lo	ose-m ₋ : 40 <	m _⊤ (e/µ,E	GeV	- Aler	T					
			A ZIA			M.	1				

High Mass Analysis (m,₂≥ 250 GeV)

28/12

04/04/22

Search for NP in di-tau final states at CMS