

University of BRISTOL

A Search for Invisible Decays of the Higgs Boson produced in ttH(had)+V(jj)H Channels

Rob White, on behalf of the CMS collaboration

4th April 2022

Status of Invisible Decays of the Higgs at CMS

SM predicts BR($H \rightarrow ZZ \rightarrow 4\nu$) < 0.1%

Several production modes can be explored at colliders

Most recent fully combined observed limit from CMS is $\frac{19\% \text{ at}}{95\% \text{ C.L}}$.

VBF full Run-2 analysis observed (expected) limit of **0.176** (0.108).

Other full Run-2 results have also been published, with observed (expected) as follows:

- <u>MonoJet/Mono-V</u>: 0.283 (0.266)
- <u>Mono-Z</u>: 0.295 (0.248)
- <u>ttH (11/21)</u>: 0.318 (0.381)

ttH (had) + V(jj)H

Η

ttŀ

W/Z

W/Z

Analysis strategy

- Search for invisibly decaying Higgs Bosons in fully hadronic final state **ttH** and **V(->jj)H** channels
- Common selection contains
 - Kinematic selection for SR and CRs
 - Cuts mitigate overlap with VBF and MonoJ/V
- Dedicated leptonic control regions used to estimate background in fully hadronic signal region
 - VH categories also use photon CR
 - Hadronic sidebands estimate QCD multijet in SR
- SR event selection furthered
 - $\circ \quad {\rm Signal\ enhancement\ cuts}$
 - QCD suppression cuts in SR (enhancing sidebands)
- SR and CRs then categorised based on event topologies of interest

Analysis Strategy: search in hadronic final state categorisation for ttH and VH production modes

- **ttH** analysis split in events with boosted Ws or tops ("ttH boosted") and with resolved top jets ("ttH resolved")
- VH category requires exactly 2 resolved light jets
- Bin on recoil ("MET-no leptons and no photons") within each category

Category	Subcategory	n _{jet}	n_b	n_t	n_V	p_{T,j_2}	Other	Recoil bin edges	
8	2Boosted1b	≥ 5	1	8	2			[200, 300, + ∞]	
	2Boosted2b	≥ 5	≥ 2		2		-	[200, 500, + 00]	
HH Boostad	1t1b	≥ 5	1	1	0	> 80			
turi boosteu	1t2b	≥ 5	≥ 2	1	0	≥ 00		[200 200 400 E00 1 m]	
	1W1b	≥ 5	1	0	1			[200, 500, 400, 500, +∞]	
	1W2b	≥ 5	≥ 2	0	1				
	5j1b	5	1	0	0		$\Delta \phi(b_1, p_T^{miss}) > 1.0$		
ttH Resolved	6j1b	≥ 6	1	0	0	≥ 80	$\& \Delta \phi(j_1, p_T^{\vec{m}iss}) > \pi/2$	[200, 300, 400, 500, +∞]	
	5j2b	5	≥ 2	0	0	777222400422	$\Delta \phi(b_1, p_T^{miss}) > 1.0$	1	
	6j2b	≥ 6	≥ 2	0	0		$\& \Delta \phi(b_2, p_T^{\vec{miss}}) > \pi/2$		
VH	2j0b	2	0	0	0		$m_{jj} \in [65, 120)$	$[200, 300, 400, 500, +\infty]$	
	2j1b	2	1	0	0	≥ 30		$[200, 300, 400, +\infty]$	
	2j2b	2	2	0	0			[200, 300, +∞]	

Fit Strategy

MET-binned maximum likelihood fit performed across SR and CRs together, for individual years and categories

- Statistics in 2e/2mu CRs is smaller than in signal region
 - Combine bins in CRs to increase statistics and be able to have BG prediction for MET > 500 GeV

ttH Categories

- Combine subcategories in boosted and resolved but keep MET dependence (MET is our main search variable)
 - Boosted ttH: combined 2e and 2mu into 2I CR
 - $\circ \quad \ \ {\sf Resolved \ ttH: keep \ separate \ 2e \ and \ 2mu \ CRs}$

VH Categories

												-	
$W \rightarrow ev$	2Boost1b	2Boost2b	1W1b	1W2b	1t1b	1t2b	5j1b	6j1b	5j2b	6j2b	2j0b	2j1b	2j2b
$W \to \mu \nu$	2Boost1b	2Boost2b	1W1b	1W2b	1t1b	1t2b	5j1b	6j1b	5j2b	6j2b	2j0b	2j1b	2j2b
Z → ee Resolved							-	2j0b	2j1b	2j2b			
$Z \rightarrow \mu \mu$	Boosted						Resolved			2j0b	2j1b	2j2b	
2boosted categories only use 2 MET bins													
			[200, 30	0)	[300, 40 [300, in	0) f)	[400, 500))	[500, inf)			-

Data control regions for background estimation

Lost lepton background CRs

CR Run 2

Run 2

Lost lepton bkg

 $W \rightarrow \ell v$ with charged lepton failing reconstruction

Processes include:

- ttbar
- single top
- W+Jets
- **EWKW**

Note that for all Run-2 plots, years are summed together for convenience, but the fit takes separate years as input

Z invisible background CRs

Zinv bkg (Z $\nu\nu$)

- Zll bkg in dilepton CRs (kinematically similar)
- γ+jets bkg in photon CR (mapped with photon theory uncertainty)

Processes include:

- Drell-Yan
- EWK ZII
- ttZ
- VV, VVV

Data

8

(300,

Overview of considered systematics

- Jet Energy Uncertainties:
 - Split into individual components based on detector topology
- V+ Jets LO-to-NLO reweighting uncertainties:
 - One of the larger sources of uncertainty
- Boosted object tagging:
 - Following central CMS recommendations
- b-tagging efficiency uncertainty
 - How often a b-jet is tagged that is truly a b-jet
- Electron/Muon ID/Isolation/Reconstruction uncertainties

Systematic Uncertainty	SR	$\gamma + \text{jets}$	e + jets	μ + jets	ee + jets	$\mu\mu$ + jets
Theoretical uncertainties						
Fact. scale V+jets (QCD)	18-23 %	0.1-0.2 %	8.6-10 %	9.4-11 %	21-26 %	21-26 %
PDF V+jets (QCD)	21-28 %	0.1 %	10-13 %	12-15 %	20-25 %	20-26 %
Ren. scale V+jets (QCD)	19-27 %	0.1-0.3 %	13-16 %	13-19 %	22-34 %	21-34 %
Ren. and Fact. scale ttH (QCD)	0.1 - 1.8	0.0 %	0.1-1.1 %	0.1-1.4 %	0.1-0.3 %	0.1-0.4 %
Ren. and Fact. scale tt (QCD)	7.6-14	0.1-0.4 %	8.7-17 %	7.4-13 %	1.2-2.8 %	1.4-5.8 %
Cross-section scale ttH	6.0-9.0 %	-	-	-	-	-
Cross-section PDF ttH	3.5 %	-	-	-	-	-
Experimental uncertainties						
Luminosity	1.5-2.6 %	1.5-2.6 %	1.5-2.6 %	1.5-2.6 %	1.5-2.6 %	1.5-2.6 %
Top tagging	3.5-6.5 %	-	3.7-5.6 %	3.7-5.6 %	<u> </u>	-
W tagging	11-18 %	-	10-18 %	9.3-16 %	<u> </u>	-
b tagging	8.9-12 %	7.0-8.9 %	8.6-11 %	8.2-10 %	9.9-14 %	9.9-16 %
Electron identification and isolation	-	-	5.6-12 %	- \	11-20 %	-
Electron reconstruction	-	-	0.6-0.9 %	- \	1.1-1.5 %	-
Muon identification	-		/ /	0.2-1.0 %	\ \-	0.4-1.9 %
Muon isolation	-	-	\ {-	0.1-0.2 %	/ /	0.2-0.3 %
Photon identification and isolation	-	2.4-12 %		<u> </u>	\-\	-
Photon reconstruction	- /	0.4-0.7 %	1-1-	/ -	7 2	-
Pile-up	3.6-10.0 %	1.6-3.3 %	2.9-4.9 %	2.7-4.9 %	3.0-8.5 %	2.6-5.6 %
Pre-firing	1.0-1.2 %	0.7-0.9 %	1.2 %	1.0-1.2 %	0.9-1.6 %	0.7-1.3 %
Top pT reweighting	3.3-3.4	0.0 %	3.6-3.9 %	3.6-4.0 %	0.3-0.6 %	0.3-0.5 %
Trigger	2.0 %	2.0 %	2.0 %	2.0 %	2.0 %	2.0 %
Tau veto	0.0 %	0.0 %	0.1-0.2 %	0.2 %	0.1 %	0.1 %
Jet Energy Uncertainties		15	\sim			
Absolute	3.1-3.9 %	0.1-3.1 %	2.6-3.3 %	2.9-3.6 %	3.0-4.9 %	2.4-4.1 %
Absolute (dec)	1.0-3.0 %	0.1-2.0 %	0.8-2.5 %	0.9-2.6 %	1.2-2.9 %	1.2-2.7 %
BBEC1	0.5-2.1 %	0.2-1.0 %	0.5-1.8 %	0.5-1.8 %	0.7-2.5 %	0.7-2.7 %
BBEC1 (dec)	0.2-1.1 %	0.0-0.8 %	0.3-1.3 %	0.2-1.4 %	0.6-3.9 %	0.4-3.6 %
EC2	0.4-1.0 %	0.1-0.3 %	0.3-0.9 %	0.6-1.9 %	1.2-4.0 %	1.4-4.4 %
EC2 (dec)	0.3-0.9 %	0.0-0.4 %	0.2-0.9 %	0.1-1.0 %	1.0-4.2 %	1.4-4.4 %
FlavorQCD	0.4-5.8 %	0.4-3.8 %	4.2-4.8 %	4.4-4.8 %	4.3-6.6 %	4.0-5.2 %
HF	0.6-2.6 %	0.1-2.1 %	0.2-2.3 %	0.3-1.0 %	1.2-3.8 %	0.7-4.3 %
HF (dec)	0.4-0.8 %	0.0-0.2 %	0.2-0.9 %	0.2-0.9 %	1.6-3.9 %	1.2-4.2 %
Jet Energy Resolution	2.4-3.6 %	0.9-2.9 %	1.7-2.8 %	1.7-3.0 %	1.0-3.5 %	1.1-3.2 %
Relative Bal	0.6-2.6 %	0.2-2.1 %	0.4-2.3 %	0.5-2.1 %	0.3-2.6 %	0.3-3.4 %
Relative Sample (dec)	0.3-6.3 %	0.1-2.7 %	0.2-5.0 %	0.3-5.1 %	0.1-6.7 %	0.8-5.7 %

Current Fit Results

SR Background Composition

Overall background yields for Run 2 in the SR

- Dominant lost lepton, Zinv and QCD contributions shown
- MC contributions only while blinded

Run 2 | SR-blinded Expected Limits

Expected limits on *BR*(*H*->*inv*) calculated with SR data blinded

- CR data-MC fit performed
- Asimov data for SR generated from this
- Comparison fit between SR Asimov and MC

ttH+VH	ttH	VH		
X.XX (0.36)	X.XX (0.46)	X.XX (0.52)		

ttH(had) competitive with similar analyses

 ATLAS CONF-2020-052 report ttH(had) 0.64⁺²⁹ (exp), 0.94 (obs)

Will contribute to a combined limit with e.g. **VBF**, **MonoJ/V**, **MonoZ** and **ttH(lep)** signal channels

Summary

Performed a search for Hinv in ttH(had) and V(jj)H final state to measure BR(H->inv) at 95% CL

- Events categorised by jet multiplicity, b-jet multiplicity and boosted objects
- Studied comprehensive list of systematics and their relevant correlations
- For comparison, ATLAS CONF-2020-052 report **ttH(had)**: 0.64⁺²⁹-19 (exp), 0.94 (obs)

Combination with limits from other Hinv analyses

- Limits within range of those of similar analyses
 - <u>VBF</u>: 0.176 (0.108).
 - MonoJet/Mono-V: 0.283 (0.266)
 - <u>Mono-Z</u>: **0.295** (0.248)
 - **<u>ttH (11/21)</u>**: **0.318** (0.381)
- Differences in analysis approach, i.e. fit model and systematics treatment
- Sync efforts underway i.e. handling overlap in V(jj)H and Mono-V channels

BACK-UP

Object definitions

• Primary AK4 Jets:

- pT > 30 GeV for jets in barrel (|eta| < 2.4)
- 30 < pT < 50 GeV for forward jets (|eta| > 2.4)
- Leptons and photons:
 - Muons: Select for Tight/Loose, veto against Loose collection
 - Electrons: Select for Tight/Veto, veto against Veto collection
 - Photons: Select for Tight, veto against Loose collection
- B-tagging from DeepCSV medium WP
 - Same pt threshold as AK4s (30 GeV)
- Boosted objects defined using nominal DeepAK8 algorithm
 Boosted V:
 - pT >200 GeV
 - 65 < m_{softdrop} < 120 GeV (to be in sync with EXO-20-004)
 - 1% mistag rate WP
 - Boosted Top
 - pT > 400 GeV
 - $\bullet 120 < m_{softdrop} < 210 \, \text{GeV}$
 - <u>1% mistag rate WP</u>

Event selection:

- HT > 200 GeV
- MHT > 200 GeV
- Recoil > 200 GeV **SR and CRs** Recoil = MET + P_T of leptons and photons in CRs

Common

selection for

- Lead and sublead jet pt > 80 GeV
- MHT / Recoil < 1.2
- dPhi(Recoil, MHT) < 0.5
- VBF orthogonality:
 - \circ |lead jet η | < 2.4
 - $\circ \quad | \text{subleading jet } \eta | < 2.4$
 - $\circ \quad \text{NOT of VBF kinematic selection}$

Signal region: ttH and VH

- Lepton and photon vetoes
- ΔΦ(Recoil, TrkMet) < 1 TrkMet_pt > 60 GeV
- QCD suppression cuts:
 - o min**∆***Φ*4j > 0.5
 - min**ω**~ > 0.3 (ttH, VH)

Event Cleaning:

- MET Filters,
- JetID, pileup ID
- bad jet filters (EE noise in 2017)
- EE prefiring fix (2017)
- HEM treatment (2018)
 - Veto events where MET points into affected phi region

Event selection: Control Regions

Datasets

Monte-Carlo datasets

Data Datasets

Generator	Processes
MadGraph (inc. Madspin and amcatnlo)	single top, ttW, ttZ, VV, VVV
Pythia	Znunu, Zll
Powheg	ttbar, ttH (H->SM), Hinv: ttH, VH, ggH, VBF

Year	Muon CRs and Hadronic region PD	Electron CRs PD	Photon CR PD
2016	MET	Single Electron	Single Photon
2017	MET	Single Electron	Single Photon
2018	MET	EGamma	EGamma

- All samples are end-of-year
- Skimmed using nanoAOD v7 CMSSW 10_2_15
- Pythia CP5 tune (some 2016 samples with CUETP8M1)
- 2016, 2017 and 2018 use campaigns Run2Summer16, Run2Fall17, Run2Autumn18 respectively

Trigger selection

	2016	2017	2018	
Signal region, muon control regions, QCD sidebands	MET PD HLT_PFMET*_PFMHT*_IDTight * = NoMu{90, 100, 110, 120}	MET PD HLT_PFMET*_PFMHT*_IDTight HLT_PFMET*_PFMHT*_IDTight_PFHT60 * = NoMu120	MET PD HLT_PFMET*_PFMHT*_IDTight * = NoMu120	
Electron CR Data	SingleElectron PD HLT_Ele27_WPTight_Gsf HLT_Ele105_CaloIdVT_GsfTrkIdT	SingleElectron PD HLT_Ele35_WPTight_Gsf HLT_Ele115_CaloIdVT_GsfTrkIdT	EGamma PD HLT_Ele32_WPTight_Gsf HLT_Ele115_CaloIdVT_GsfTrkIdT HLT_Photon200	
	SinglePhoton PD HLT_Photon165_HE10 HLT_Photon175 NOT of above electron triggers	SinglePhoton PD HLT_Photon200 NOT of above electron triggers		
Electron CR MC	Any of electron and photon triggers	Any of electron and photon triggers		
Photon CR	SinglePhoton PD HLT_Photon165_HE10 HLT_Photon175	SinglePhoton PD HLT_Photon200	EGamma PD HLT_Photon200	

QCD prediction

- QCD strongly suppressed by event selection
- Residual QCD prediction from sidebands by inverting/tightening minΔφ_{4i} & minω~ cuts
- Use MC transfer factor method for QCD prediction (non-QCD BG subtracted)

 $N^{\text{QCDpred}} = (N^{\text{data,CR}} - N^{\text{EWKMC,CR}})^* (N^{\text{QCD,SR}}/N^{\text{QCD,CR}})$

- As QCD MC stats in SR are poor, we determine overall QCD MC scale factor for each category (ttH, VH0b, VH1b, VH2b)
- Use MC fractions to break down by MET bin and in case of ttH also by sub-category

Additional systematic on Photon normalization

dimuon/photon in data and MC

