Search for heavy resonances decaying into a Z boson and a Higgs with IIbb/vvbb final states with the ATLAS detector

Tong Qiu IoP Meeting 2022 4 Apr 2022

Conf note: http://cdsweb.cern.ch/record/2728053

Targeted Signal Models

Two Higgs Doublet Model (2HDM)

- Various BSM theories require the existence of a second Higgs doublet
- 2HDM consists of 5 Higgs-like bosons: h, H, A and H±
- Consider CP-conserving 2HDM with mh = 125 GeV, mA=mH=mH±
- Two free parameters: mixing angle $\alpha,$ ratio of the vacuum expectation values of the two Higgs doublets β

Heavy Vector Triplets (HVT)

- Various BSM theories predict a new strong interaction at a higher energy scale
- Heavy new gauge bosons: Z' and W'

2 channels depending the Z decay

- 0 lepton channel
- 2 lepton channel

2 regimes depending on h reconstruction

- Resolved: 2 small-R (0.4) calo jets
- Merged: 1 large-R (1) calo jets

b-tagging

- Use the 70% efficient b-tagging WP
- Select resolved events with at least 1 b-tagged small-R jet
- Or merged events with at least 1 b-tagged track jet associated with the large-R jet

Priority resolved

• Event categorized as resolved if it satisfies both the resolved and the merged SR event selection

Signal regions

- Events with mbb inside the Higgs mass window
- Also satisfy other selections on lepton and jet pt, missing transverse energy and mll to enhance signals
- Main background: Z+jets, W+jets, top

mbb sideband control region

- Events with mbb not inside the Higgs mass window
- Dominated by Z+jets, W+jets, top background

Top control region in 2L

- Events with different flavour leptons
- Revert cut on missing transverse energy
- Dominated by top background

Fit Strategy

- ggA/HVT fits use 1, 2 tagged resolved events and merged events with no additional b-tagged jets
- bbA fit also uses 3+ tagged resolved events and merged events with additional b-tagged jets
- In the bbA fit:
 - The ttbar background are splitted into ttbar+HF and ttbar+LF
 - 3+ b-tagged Z+jets background are modelled separately from 1, 2 b-tagged Z+jets

Shape and normalization

- All signals are modelled by MC
- The shapes of all background are modelled by MC
- The normalizations of the three main background (ttbar, Z+jets and W+jets) are determined from the fit
- The normalizations of other small backgrounds (diboson, SM Higgs) constrained to SM predictions

Before correction

After correction

ATLAS Work in progress

 $\sqrt{s} = 13 \, TeV$, 139 fb⁻¹

mBBcr 2 btags

 χ^2 /ndf: 1.769

10

10

10

10

10²

10

100

1.50

1.25

1.00

0.75

0.50

200

400

600

800

of Events

Number

Data/Simulation

data

uncertaintv

SM Higgs

Z+(bl,cl,l)

Z+(bb,bc,cc)

1600

Dihoson

1000

 $m_{VH}[GeV]$

1200 1400

Data-driven correction

- The background events in the signal regions are reweighted to improve the modelling
- Reweighting functions are derived from the mbb sideband control regions
- Reweighting is based on ptbb, large-R jet pt and missing transverse energy

5

Reweighting function

Limits

m_{Z'}[GeV]

2HDM Interpretation

- A boson width and bbA/ggA fraction vary strongly as a function of the mass, tan beta and cos(beta alpha)
- Signal samples generated with Narrow Width approximation
- NWA distribution smeared to create large width distribution
- bbA signal and ggA signal mixed with different ratio
- Calculate limits in the 3D grid of ggA/bbA fraction, signal width and signal mass

Limits in the fraction/mass space

Limits in the width/mass space

- 4 types of 2HDM models depending how fermions interact with the Higgs Doublets: Type I, Type II, flipped, lepton specific
- 3 parameters: mA, tanb, cos(b-a)
- The theory cross-sections were calculated using up to next-to-next-to-leading-order (NNLO) QCD corrections with 5FS implemented in SUSHI

Examples

- Expected limit on tanb/cos(b-a) ^(a)/_b space
- Type-I model
- Gap in the middle: alignment limit where the A coupling to Zh goes zero
- Gap on the left: h>bb decay not possible

- Expected limit on tanb/mA space
- Type-I model
- A production decreases as tanb increases

- Searched for Z' and A using the full run2 ATLAS data corresponding to a total integrated luminosity of 139 fb–1
- Upper Limits on XS placed in the mass range of 300 GeV to 5 TeV for Z' and 220 GeV to 2 TeV for ggA/bbA
- No significant excess found for ggA/Z'
- Upper limits will be also placed on the 2HDM model and HVT model parameter space

Backup

Process	Generator	Prediction order of $\sigma_{\rm prod}$	
$W \to \ell \nu, Z \to \ell \ell, Z \to \nu \nu$	Sherpa 2.2.1	NNLO	
$t\bar{t}$	Powheg + Pythia8	NNLO+NNLL	
single top (<i>s/t/Wt</i> -channel)	Powheg + Pythia8	NLO	
$t\bar{t} + h$	MG5_AMC@NLO + Pythia8	NLO (QCD) and NLO (EW)	
$t\bar{t} + V$	MG5_AMC@NLO + Pythia8	NLO	
$qg/q\bar{q} \to VV \to \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.1	NLO	Table
$gg \rightarrow VV \rightarrow \ell\ell/\ell\nu/\nu\nu + q\bar{q}$	Sherpa 2.2.2	NLO	taken from
$qg/q\bar{q} ightarrow \ell\ell u u$	Sherpa 2.2.2	NLO	Conf note
$qq \to Wh \to \ell \nu + b\bar{b}$	Powheg + Pythia8	NNLO (QCD) and NLO (EW)	
$qq \rightarrow Zh \rightarrow \ell\ell/\nu\nu + b\bar{b}$	Powheg + Pythia8	NNLO (QCD) and NLO (EW)	
$gg \rightarrow Zh \rightarrow \ell\ell/\nu\nu + b\bar{b}$	Powheg + Pythia8	NLO+NLL	

Event selection

Variable	Resolved	Merged		
Common selection				
Number of jets	$\geq 2 \text{ small-} R \text{ jets } (0, 2\text{-lep.})$	≥ 1 large- <i>R</i> jet		
	2 or 3 small- <i>R</i> jets (1-lep.)	\geq 1 VR track-jets (matched to leading large- <i>R</i> jet) ^{‡‡}		
Leading jet $p_{\rm T}$ [GeV]	> 45	> 250		
m_h [GeV]	110-140 (0,1-lep.), 100-145 (2-lep.)	75–145		
0-lepton selection				
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	> 200		
S _T [GeV]	> 150 (120*)	_		
$\Delta \phi_{jj}$	$< 7\pi/9$	_		
$p_{\rm T}^{\rm miss}$ [GeV]	> 60			
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},ec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$<\pi/2$			
$\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$			
min $\left[\Delta\phi(\vec{E}_{\rm T}^{\rm miss}, {\rm small-}R {\rm jet})\right]$	> $\pi/9$ (2 or 3 jets), > $\pi/6$ (≥ 4 jets)			
$N_{ au_{ m had}}$	0**			
	(> 9	if $m_{Vh} < 240 \text{GeV}$,		
MET significance S	$ > 6.6 + 0.01 \cdot m_{Vh} $	if 240 GeV $\leq m_{Vh} < 700$ GeV,		
	> 13.6	if $m_{Vh} > 700 {\rm GeV}$,		
2-lepton selection				
Leading lepton $p_{\rm T}$ [GeV]	> 27	> 27		
Sub-leading lepton $p_{\rm T}$ [GeV]	> 20	> 25		
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} [\sqrt{\mathrm{GeV}}]$	$< 1.15 + 8 \times 10^{-3} \cdot m_{Vh} / (1 \text{ GeV})$			
$p_{\mathrm{T},\ell\ell}$ [GeV]	$> 20 + 9 \cdot \sqrt{m_{Vh}/(1 \text{ GeV}) - 320}^{\dagger\dagger}$			
$m_{\ell\ell}$ [GeV]	$\left[\max\left[40, 87 - 0.030 \cdot m_{Vh}/(1 \text{ GeV})\right], 97 + 0.013 \cdot m_{Vh}/(1 \text{ GeV})\right]$			
$\Delta R(\ell,h)$	> 2.0			

Table taken from <u>Conf note</u>

0 lepton channel post-fit distributions

1 tag

• Good data/mc agreement

Control regions Events/GeV Events/GeV 🛉 data + data ATLAS Preliminary ATLAS Preliminary Events/GeV ----- 2.0 TeV HVT, μ = 20 ----- 2.0 TeV HVT, μ = 20 10 √s = 13 TeV, 139 fb⁻¹ √s = 13 TeV, 139 fb⁻¹ ATLAS Preliminary 🛉 data Events/Ge¹ ATLAS Preliminary + data 10⁵ top top √s = 13 TeV, 139 fb⁻¹ s = 13 TeV, 139 fb⁻¹ top top SR 0-lep. SR 0-lep 10 10⁵ 10⁵ Z+(bb,bc,cc) Z+(bb,bc,cc) CR 0-lep. CR 0-lep. Z+(bb,bc,cc) Z+(bb,bc,cc) 2 b-tags, resolved 1 b-tag, resolved 10 Z+(bl,cl), Z+l Z+(bl,cl), Z+l 10 1 b-tag, resolved Z+(bl,cl), Z+l 2 b-tags, resolved Z+(bl,cl), Z+l W+(bb,bc,cc) 10³ W+(bb,bc,cc) W+(bb,bc,cc) W+(bb,bc,cc) 10³ W+(bl,cl), W+l W+(bl,cl), W+l 10 W+(bl,cl), W+l W+(bl,cl), W+l 10² 10 other other 10² other other 10 uncertainty uncertainty 10² 10 uncertainty uncertainty 10 10 10 **Resolved** 10-10-10-10- 10^{-2} 10-2 10^{-2} 10^{-2} 10- 10^{-3} 10-3 10^{-3} 10^{-4} 10 10-4 10data / bkg data / bkg 1.2 1.2 1.1 12 data / bkg data / bkg 1.1 1.1 0.9 0.8 0.9 0.9 0.9 0.8 0.8 000 2000 m_{T,Vh} [GeV] 0.8 1000 300 400 200 300 1000 2000 200 300 1000 2000 200 300 2000 200 1000 m_{T,Vh} [GeV] m_{T.Vh} [GeV] m_{T.Vh} [GeV] Events/GeV Events/GeV 🕴 data data ATLAS Preliminary ATLAS Preliminary 10⁵ 10⁴ ----- 2.0 TeV HVT, μ = 20 ----- 2.0 TeV HVT, μ = 20 √s = 13 TeV, 139 fb⁻¹ s = 13 TeV, 139 fb⁻¹ top top SR 0-lep SR 0-lep. 10⁴ 10³ Z+(bb,bc,cc) Z+(bb,bc,cc) 1 b-tag, merge 2 b-tags, merged Z+(bl,cl), Z+l Z+(bl,cl), Z+l 10 W+(bb,bc,cc) 10² W+(bb,bc,cc) W+(bl,cl), W+l W+(bl,cl), W+l 102 10 other other All plots 1(uncertainty uncertainty Merged taken from 10 Conf note 10⁻¹ 10-2 10-2 10⁻³ 10⁻³ 10⁻⁴ 10-4 data / bkg 1.2 data / bkg 0.9 0.8 0.9 0.8 ^{00 3000} m_{T,Vh} [GeV] 2000 3000 m_{T,Vh} [GeV] 500 1000 2000 400 2000 1000

2 tag

2 lepton channel post-fit distributions

<u>1 tag</u> Events/Ge/ ATLAS Preliminary **ATLAS** Preliminary Vs = 13 TeV, 139 fb⁻¹ 🕴 data + data Events/Ge 10⁶ ----- 2.0 TeV HVT, μ = 20 ----- 2.0 TeV HVT, μ = 20 10⁶ Z+(bb,bc,cc) Z+(bl,cl), Z+l Z+(bb,bc,cc) 10⁵ SR 2-lep. SR 2-lep. Z+(bl,cl), Z+l 10[£] 1 b-tag, resolved 2 b-tags, resolved 10 top 10 W+(bb,bc,cc) W+(bb,bc,cc) 10 W+(bl,cl), W+l W+(bl,cl), W+I 10³ other other 10 10² uncertainty uncertainty Resolved 10 10 10-10-10⁻² 10^{-2} 10^{-3} 10-10 10-4 data / bkg 1.2 1.1 1.2 data / bkg 0.9 0.8 200 0.9 2000 3000 m_{Vh} [GeV] 300 400 300 1000 1000 Events/GeV 🕴 data Events/Ge/ ATLAS Preliminary ATLAS Preliminary 🛉 data 10⁴ ----- 2.0 TeV HVT, μ = 20⁻⁻ √s = 13 TeV, 139 fb⁻¹ 10³ **■** √s = 13 TeV, 139 fb⁻¹ ----- 2.0 TeV HVT, μ = 20 Z+(bb,bc,cc) SR 2-lep. SR 2-lep Z+(bb,bc,cc) Z+(bl,cl), Z+l 10³ Z+(bl,cl), Z+l 1 b-tag, merged 2 b-tags, merged top 10² W+(bb,bc,cc) 10 W+(bb,bc,cc) W+(bl.cl), W+l other other uncertainty uncertainty Merged 1⊨ 10⁻¹ 10-10⁻² 10^{-2} 10⁻³ 10⁻³ 10⁻⁴ 10-4 data / bkg data / bkg 1.1 0.9 0.8 200 300 1000 2000 3000 1000 m_{Vh} [GeV]

• Good data/mc agreement

top

top

²⁰⁰⁰ 3000 m_{Vh} [GeV]

2000 3000 m_{Vh} [GeV]

