The Structure of Relativistic Jets from Neutron Star Mergers

Gavin P Lamb



HEPP & APP Annual Conference, 5th April 2022

2D sliced snapshot from a 3D hydrodynamic simulation of a relativistic jet propagating through a neutrino driven wind and ejecta following a neutron star merger (credit Lorenzo Nativi)

## Neutron star mergers – gravitational and electromagnetic waves...

 Gravitational waves: i. Mass quadrupole Electromagnetic waves: i. Thermal emission from the radioactive decay of rapidly synthesised heavy elements in merger ejecta (neutrons!) – kilonova ii. Non-thermal emission from shocks – gamma-ray bursts and their afterglows



Lamb, cartoon, 2021 - various fellowship cases and job application statements

#### A cartoon illustration...

I think this makes these systems easier to understand!? But it was recently pointed out to me\* that all these cartoons look like we're making a poor man's Kandinsky!



Kandinsky, No Title, 1923 – Guggenheim museum \*Frederick Daigne, seminar at Leicester, 23/03/2022

#### Gamma Ray Bursts – what are they?

- First detected serendipitously in the 1960s
- Highly variable, transient flashes of high energy photons
- BATSE in the 1990s showed GRBs to be extragalactic and hugely energetic!
- Two distinct groupings in duration and spectral hardness long GRBs (>2s) and short GRBs (<2s)</li>



#### How we understand GRBs

Highly energetic and jetted relativistic explosions!!!

- As the jet expands it sweeps up matter, like a snow plough
- A shock system forms as the jet decelerates – leading to a forward and reverse shock system
- Broadband afterglow via synchrotron radiation from the decelerating shock system



#### Short GRBs and Neutron Star Mergers

- The population of short GRBs has diverse host galaxy types not just star-forming galaxies (like long GRBs)
- No supernovae in the afterglows
- Some have evidence for kilonovae within the afterglow

   currently ~eleven candidate kilonovae in GRB afterglows



## Gamma-Ray vs Gravitational Wave detected Mergers

#### Gamma-ray selected:

- Viewed at small inclination from the jet central axis
- High energy GRB
- Large distance, >100s Mpc
- Rapid afterglow peak and decline, <10 days</li>
- Kilonova buried within afterglow emission

#### Gravitational wave selected:

- Viewed from higher inclination from the jet central axis
- No or low-luminosity GRB
- Small distance, <300 Mpc
- Delayed afterglow peak, ~100 days to peak
- Kilonova will typically precede afterglow emission

#### Gravitational Wave Electromagnetic Counterparts from the Jet – Geometry Matters

 $10^{3}$ 

10<sup>-2</sup>



- Typically at ~30 degrees
- No bright GRB(!?)
- Lightcurve reveals jet structure



Lamb & Kobayashi 2017

### GW170817 – a binary neutron star merger



Lyman, Lamb et al. 2018

See also: Xie ea 2018, Resmi ea 2018, Troja ea 2018, Margutti ea 2018, Lazzati ea 2018, Granot ea 2018, etc.

10

10

10-2

10<sup>1</sup>

10<sup>1</sup>

 $t/t_{\rm peak}$ 

d log

d log

Lamb, Mandel & Resmi 2018

10'

10

Flux

**Observer** 

time



#### GW170817 – a successful, and ultra-relativistic jet



Lamb, Lyman et al. 2019

See also: Troja ea 2019-2022, Dobie ea 2019, Ghirlanda ea 2019, Balasubramanian ea 2021, etc.



## GRB 170817A and AT2017gfo – off- vs on-axis

- Model afterglow at ~20 degrees off-axis

   thick solid lines
- Kilonova dotted lines
- The same model afterglow, but viewed at 0 degrees, on-axis dashed lines

Off-axis, kilonova and afterglow are clearly separated. The shape of the afterglow indicates some lateral jet structure. On-axis, kilonova is buried in the afterglow emission. No obvious evidence for jet structure.

#### What can we do with GW-EM?

Other than the structure and diversity of relativistic jets:

- Cosmology
- DL(GW) vs z(GRB... well, host galaxy)
- DL(GW) proportional to the inclination most of the uncertainty in GW distance estimates comes from this degeneracy

$$h_{\times} \propto 2\cos i$$
  $h_{+} \propto 1 + \cos^2 i$ 

 Afterglow modelling can give the inclination – but with some cautionary tales



Nissanke et al. 2010

## Inclination estimates, and use to estimate $H_0$

Inclination from modelling – quite a broad range!





Hotokezaka et al. 2019,  $H_0 = 68.9 + / -4.7$ 

Nakar & Piran 2021

## The problem with afterglow modelling...

- Commonly, afterglow models neglect lateral expansion
- Claimed to only effect the lightcurve post-peak or jet-break
- THIS IS NOT TRUE FOR OFF-AXIS AFTERGLOWS!
- Identical model parameters, with (thick line) and without (thin line)





Lamb, Fernandez, Hayes et al. 2021

## The problem with afterglow modelling for inclination estimation...



The log ratio of afterglow parameters for jet fits to GW170817 data without/with lateral spreading effects



#### Lamb, Fernandez, Hayes et al. 2021

### Simulations of Merger Jets

- What shapes the emergent jet structure?
- Is the emergent jet entirely shaped by the ejecta interaction or does the intrinsic structure of the jet survive?
- Using the same merger ejecta and environment:
  - Four jets two profiles, two jet powers (top-hat, Gaussian | 10<sup>50</sup>, 10<sup>51</sup> erg/s)
  - Jets have injected half opening angles of 15 degrees
  - Jets are injected for 100ms
  - Initial  $\Gamma_0 = 5$ , and specific enthalpy  $h_c = 30$ , giving an asymptotic  $\Gamma_{\infty} = 150$



Nativi, Lamb et al. 2022

### Physically motivated jets



- 3D simulations using AMUN
- Jets in a neutrino driven wind and merger ejecta
- The effect on the kilonova
- Jets make kilonova brighter and bluer (towards the pole)

Jet at 65ms, [left] rest-mass density (log), [right] electron fraction

Nativi [incl. Lamb] et al. 2021

# Physically motivated jets

- Resultant, rotationally averaged jet profiles
- Differences are largely due to chaotic, turbulent effects
- Less powerful jets are more collimated
- All jet profiles can reproduce the temporal shape of GW170817
- No fit was made to the VLBI
- NOTE the merger ejecta and wind is inconsistent with the kilonova seen in GW170817! (Ejecta masses are lower)



Nativi, Lamb et al. 2022

### Inhomogeneity within the jet!



#### A physically motivated jet structure-function?

- All profiles through φ
- Bootstrap to approximate distribution
- Find median of medians (black lines)

$$\begin{split} \Theta &= \left[1 + \left(\frac{\theta}{\theta_c}\right)^2\right]^{1/2}, \\ E(\theta) &= E(\theta = 0)\Theta^{-a}, \\ \Gamma(\theta) &= 1 + \left[\Gamma(\theta = 0) - 1\right]\Theta^{-b} \end{split}$$

Energy cut-off at wide angles as:

$$(1+(\theta/\theta_j)^{a_2})^{-a_1}.$$



**Lamb** et al. 2022

- An approximation for the collimation efficiency
- Many simulations with different ejecta/wind configurations – computationally expensive
- Look at past simulations best published sample, Nagakura et al. 2014
  - 7 consistent simulations
- Use output to fit mass vs collimation

$$\theta_{c} = 0.05 \ \theta_{0} \ (L_{iso}/M_{ej})^{0.31}$$



The ratio of jet power to ejecta mass versus the degree of collimation from initial jet opening angle to resultant angle

#### A Universal Profile?

- A universal structure for all GRBs has been a popular idea.
- Here we see that chaotic mixing processes add an uncertainty to any profile
- The core size is a function of the ejecta mass!
- Even if all jets have an identical energy reservoir, the observed properties of KN are quite broad
- One possible origin for much of the jet diversity seen in GRB population is the degree of collimation and mixing from the ejecta – this would depend on the ejecta density (at the poles)

A universal profile NOT a universal jet!??

#### Comparison

- 9 GRB afterglows with KN candidates
- Use literature ejecta mass to set  $\theta_c$
- Initially, alter only ambient density (red)
- Change magnetic microphysical parameter (green), from 0.01 to 0.1
- Models with pink star have one tenth jet energy – note GRB 160821B is consistent with refreshed shock model energies
- NOT fits!
- Phenomenological comparison indicates consistency with an intrinsically narrow energy reservoir for short GRB jets.



### Summary

- GW170817 has made structured jets the "normal"
- Next steps in modelling confidence for cosmology from GW-EM
  - The afterglow physics is important lateral spreading must be considered for off-axis modelling
- Simulations show that jets:
  - ...jet ejecta interaction makes the kilonova, bluer and brighter
  - ...and shapes the resultant jet structure
- Simulations are helping refine the viable jet structure profiles and understand the processes that are shaping the jets!

#### Opacity in GRBs

- Pair production annihilation of highest energy photons (A)
- Scattering by pair produced electrons (B)
- Scattering by electrons that accompany baryons requires baryonic jets (C)



Dissipation radius (internal shocks),  $R_d \propto \Delta t \Gamma^2$ 

Depend on

spectrum of

prompt emission

## A population of failed GRBs?

- No bright GRBs (like the choked jet scenario)
- Afterglows!?
- The rate of GW detected neutron star mergers is starting to rule this out(?)



Lamb & Kobayashi 2016

### What about a low luminosity population?

• Little evidence for any nearby short GRBs! See, Mandhai et al. 2018



BATSE and *Fermi*short GRBs sky
localisation
correlated with
galaxies (consistent
with zero) *– Swift* bursts show
an even smaller
fraction!

Mandhai, Tanvir, Lamb, Levan & Tsang 2018

## An aside – the case of GRB 160821B

z = 0.162  $\theta_j \sim 1^{\circ}.9$   $E_j \sim 0.9 \times 10^{49}$  erg  $E_{K,iso} \sim 1.6 \times 10^{52}$  erg  $E_{\gamma,iso} \sim 2.1 \times 10^{50}$  erg



Lamb, Tanvir, Levan et al. 2019

#### The refreshed shock model for GW170817?

- It works!
- A real alternative to purely structured jets... but some structure is expected!

| Parameter                | Model 1                          | Model 2                        |
|--------------------------|----------------------------------|--------------------------------|
| $\log [E_1 (erg)]$       | $51.51^{+1.07}_{-0.76}$          | $51.70\substack{+1.16\\-0.81}$ |
| $\log [E_{total} (erg)]$ | $52.62^{+1.16}_{-0.77}$          | $53.10\substack{+1.19\\-0.80}$ |
| $\Gamma_1$               | $19.54\substack{+44.04\\-8.66}$  | $162.18^{+219.7}_{-122.1}$     |
| $\Gamma_2$               | $\geqslant 7.79^{+1.14}_{-1.22}$ | $\geq 8.27^{+2.13}_{-1.54}$    |
| $\theta_j$ (rad)         | $0.09\substack{+0.02\\-0.01}$    | $0.11\substack{+0.03\\-0.02}$  |
| $\iota$ (rad)            | $0.28\substack{+0.06\\-0.02}$    | $0.31\substack{+0.08\\-0.05}$  |
| $\log \varepsilon_B$     | $-2.29^{+0.88}_{-1.82}$          | $-3.31^{+1.18}_{-1.18}$        |
| $\log \varepsilon_e$     | $-1.86\substack{+0.69\\-1.17}$   | $-1.68^{+0.69}_{-1.19}$        |
| $\log [n \ (cm^{-3})]$   | $-2.94\substack{+1.29\\-0.75}$   | $-2.54\substack{+0.96\\-1.01}$ |
| р                        | $2.16\substack{+0.01\\-0.03}$    | $2.17\substack{+0.01\\-0.01}$  |
| S                        | N/A                              | $9.72\substack{+3.43\\-2.19}$  |
|                          |                                  |                                |

Note. Model 1 is for two discrete shells with uniform energy and Lorentz factor; Model 2 is where the secondary shell has a distribution of energy with velocity determined by the index 1 - s.



Lamb, Levan & Tanvir 2020

#### Recap GRB 170817A afterglow origin

- No observational evidence for a large, nearby population of lowluminosity short GRBs e.g., failed GRBs or choked jets
- Strong evidence from GW170817 for structured jets in short GRBs
- Refreshed shocks, as seen in GRB 160821B, can recreate the off-axis afterglow of GW170817 – an alternative (still needs some lateral structure e.g., a cocoon)



### Imaging – radio VLBI and superluminal motion

- Radio imaging of superluminal motion can constrain the inclination
- Again, spreading is often neglected in modelling – underestimate the inclination
- Often, a point approximation is used... how accurate is this?



Apparent superluminal velocity for the same jet parameter models – dashed is with spreading, solid without spreading

Fernandez, Kobayashi & Lamb 2022



### Imaging – radio VLBI and superluminal motion

- [left] 5 models with spreading that fit the temporal afterglow lightcurve of GW170817
- The centroid position at 75, 150, and 230 days
- The green bar indicates the observed centroid shift in GW170817
- [right] The percentage discrepancy between the point approximation estimate for the viewing angle versus the model parameters
- For small θ<sub>obs</sub>/θ<sub>c</sub>, the approximation is okay e.g., for GW170817



Error in the estimation of  $\theta_{obs}$  from synthetic images as a function of  $\theta_{obs}/\theta_c$  for two different observing windows

Fernandez, Kobayashi & Lamb 2022

#### Inferred jets – a Bayesian approach (in prep)

- Use Bayesian framework to compare short GRB rates with GW merger rates
- Add the Fermi GRB 170817A
- Add the non-detection for GW190425
- Infer luminosity function
- Assume one of four jet-structures – top-hat (TH), Gaussian (G), powerlaw (PL), or double-Gaussian (DG)



#### Inferred jets – a Bayesian approach (in prep)

| Data              | $	heta_j$ (°)                             | Data                   |           | $\theta_{\sigma}$ (                   | °)                                          |
|-------------------|-------------------------------------------|------------------------|-----------|---------------------------------------|---------------------------------------------|
| sGRB rate         | $16.4 \ ^{+19.9}_{-12.1}$                 | sGRB 1                 | rate      | $14.7 \stackrel{+}{\_}$               | $\begin{array}{c} 20.9 \\ 10.6 \end{array}$ |
| + GW170817        | $5.8 \ ^{+17.0}_{-4.1}$                   | +  GW17                | 0817      | $7.4 \stackrel{+}{_{-}}$              | $\begin{array}{c} 6.4 \\ 5.1 \end{array}$   |
| + GW190425        | $4.7 \ ^{+12.9}_{-3.1}$                   | + GW19                 | 00425     | $5.7 \stackrel{+}{_{-}}$              | $-5.9 \\ -4.0$                              |
| TH jets, populati | ets, population <b>G</b> jets, population |                        |           |                                       |                                             |
| parameters        | parameters                                |                        |           |                                       |                                             |
| Data              | S                                         | a                      | $	heta_c$ | $\begin{pmatrix} \circ \end{pmatrix}$ |                                             |
| sGRB rate         | $2.1  {}^{+1.4}_{-1.0}$                   | $1.6 \ ^{+1.3}_{-0.8}$ | 12.7      | $+17.6 \\ -8.6$                       |                                             |
| + GW170817        | $3.2 + 1.2 \\ -0.9$                       | $1.7 \ ^{+1.6}_{-1.0}$ | 5.9       | $+6.7 \\ -3.9$                        |                                             |
| + GW190425        | $3.5 \stackrel{+1.2}{_{-0.9}}$            | $1.7 \ ^{+1.4}_{-0.9}$ | 5.1       | $+6.0 \\ -3.3$                        |                                             |

#### **PL** jets, population parameters

#### **DG** jets, population parameters

| Data        | $\log_{10}(E_{ m coccon}/E_{ m on})$ | $\log_{10}(\Gamma_{ m coccon}/\Gamma_{ m on})$ | $	heta_{ m on}$ (°)                               | $	heta_{ m coccon}$ (°)                            |
|-------------|--------------------------------------|------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| sGRB rate   | $-3.2 \stackrel{+2.0}{_{-1.9}}$      | $-3.1 \ ^{+2.0}_{-2.0}$                        | $12.6 \begin{array}{c} +15.8 \\ -8.7 \end{array}$ | $53.5 \ ^{+25.1}_{-27.7}$                          |
| + GW170817  | $-3.5 \stackrel{+1.3}{_{-1.4}}$      | $-3.0 \ ^{+1.9}_{-2.0}$                        | $6.6 \ ^{+6.3}_{-4.8}$                            | $48.3 \begin{array}{c} +28.2 \\ -26.9 \end{array}$ |
| +  GW190425 | $-3.8 \ ^{+1.3}_{-1.3}$              | $-2.9 \ ^{+2.0}_{-2.0}$                        | $5.7 \ ^{+5.5}_{-4.0}$                            | $48.3 \begin{array}{c} +28.1 \\ -28.1 \end{array}$ |



Bayes factor model selection – when GW data is included, a structured jet model is preferred

#### Hayes, Heng, Lamb et al. (in prep.)

### Observed in GRBs?

- The jet break can measure the structure!
- Solid lines, with spreading
- Dashed lines, without spreading
- Four jet structure models





Lamb, Kann et al. 2021

#### Observed in GRBs?







Lamb, Kann et al. 2021

#### Observed in GRBs? - hints of diverse jet structures



19 long GRBs, 1 short GRB – jet break, redshift, follows closure relations:

9 "smooth" edged jets

8 "sharp" edged jets

3 indeterminate jets



#### Lamb, Kann et al. 2021

#### What is the effect of this inhomogeneity?

- 3D simulations the jet profile is traditionally averaged through 360 degree rotation, φ.
- $\bullet$  This loses the jet structure in  $\phi$
- Could preserving this φ structure produce some variability in the afterglow?
- No; not a significant difference



Comparison of an afterglow using the rotationally averaged profile, versus one example where the rotational structure is preserved

#### How does this inhomogeneity appear?

- At a fixed polar angle, the rotational orientation effects the observed, peak afterglow flux
- This is more pronounced for the initially Gaussian jet in our two simulations
- This is expected, as turbulence is more dominant for jet components with lower energy

How does this effect our understanding of the short GRB population?



**Lamb** et al. 2022





The afterglow peak flux is proportional to the kinetic energy,  $F_p \propto E_k^{(3+p)/4}$ The range of  $F_p$  for a fixed polar angle through the jet rotation in  $\varphi$ .

Inferred  $E_{k}$  for each of the afterglow lightcurves from a unique population of structured jets viewed at a random angle within the gamma-ray bright region (optically thin) jet. Short GRB population shown for comparison.

#### **Lamb** et al. 2022

#### How to relate this to GRB afterglows!?

- Kinetic energy distribution assumed fixed parameters: ambient density, microphysics, etc.
- Real afterglow population is quite diverse too...
- Using an averaged structure profile, with fixed parameters

   lightcurve broadly consistent
   with population
- BUT!!! Is it one for all?

