

Searches for New Physics in rare B decays IOP - HEPP & AP 2022

Paula Álvarez Cartelle, University of Cambridge with results from LHCb, ATLAS, CMS, Belle and Belle II

New Physics searches with Flavour

- Flavour: powerful tool to search for New Physics (NP) indirectly
 - Look for inconsistencies with the Standard Model
- Sensitive to large energy scales,
 - Increase precision in flavour \Rightarrow stronger bound on NP scale
 - Even beyond the reach of direct searches **Could be the first place we see hints of something new!**

Rare B decays

Processes that are suppressed or even forbidden in the SM

- Effects of new physics can be relatively large
- Access high mass scales, due to virtual contributions

FCNC transitions, such as $b \rightarrow s(d) \ell \ell$ decays, are excellent candidates for indirect NP searches

Rare *B* decays offer rich phenomenology: Branching ratios, angular observables, LFU ratios...

IOP - HEPP & AP 2022

Theoretical framework - Effective theory

Can describe these interactions in terms of an effective Hamiltonian that describes the full theory at lower energies (μ) $\mathcal{H}_{eff} \sim \sum C_i(\mu) \mathcal{O}_i(\mu)$

 $C_i(\mu) \rightarrow \text{Wilson Coefficients}$ (perturbative, short-distance physics, sensitive to $E > \mu$)

NP will modify the measured value of the Wilson coefficients present in the SM or introduce new operators

 $O_i \rightarrow$ Local operators (non-perturbative, long-distance physics, sensitive to $E < \mu$)

07: photon

- O_9 : vector
- O_{10} : axial-vector

Fully leptonic decays: $B^{0}(S) \rightarrow \mu^{+}\mu^{-}$

Flavour Changing Neutral Current and helicity suppressed

 Fully leptonic final state: Very precise SM prediction Sensitive to new (pseudo-)scalar contributions

[Beneke et al, JHEP 10 (2019) 232]

 $\mathscr{B}(B_s^0 \to \mu^+ \mu^-)_{\rm SM} = (3.66 \pm 0.14) \times 10^{-9}$ $\mathscr{B}(B^0 \to \mu^+ \mu^-)_{\rm SM} = (1.03 \pm 0.05) \times 10^{-10}$

B_s significance: 4.6 σ

IOP - HEPP & AP 2022

[JHEP 04 (2020) 188] Run1 (25/fb) + 2016 (36/fb)

 $\mathscr{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10} \ (95 \% \text{ CL})$

$\tau_{\rm eff}(B_s^0 \to \mu^+ \mu^-) = 1.70 \stackrel{+0.61}{_{-0.44}} \text{ ps}$

P. Álvarez Cartelle (Cambridge)

Semileptonic $b \rightarrow s \ell^+ \ell^-$ decays

- Hadronic system in the final state, theoretical predictions more challenging
 - Some observables will profit from cancellation of QCD nuisances

Less suppressed (BR~10⁻⁶) and rich phenomenology: BR's, angular observables, ...

 \overline{d} $ar{B}^0$ \overline{K}^{*0} W $\mathcal{C}_7^{(\prime)}$ μ $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$ γ/Z^0 $\mathcal{C}_7^{(\prime)}C_9^{(\prime)}$ μ interference $4[m(\ell)]^2$

$b \rightarrow s \ell^+ \ell^-$ decays: The di-lepton spectrum

P. Álvarez Cartelle (Cambridge)

 \overline{d} $ar{B}^0$ \overline{K}^{*0} W $\mathcal{C}_7^{(\prime)}$ μ $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2}$ γ/Z^0 $\mathcal{C}_7^{(\prime)}C_9^{(\prime)}$ μ interference $4[m(\ell)]^2$

$b \rightarrow s \ell^+ \ell^-$ decays: The di-lepton spectrum

$b \rightarrow s \ell^+ \ell^-$ decays: The di-lepton spectrum

$b \rightarrow s \mu^+ \mu^-$ anomalies

 In recent years, tensions with the SM predictions have been observed in these processes Different observables will have different sensitivity to New Physics

$S \mu^+ \mu^-$ branching ratios

IOP - HEPP & AP 2022

▶ In the region $q^2 \in [1.1, 6.0]$ GeV²/ c^4 compatibility with the SM at 3.6σ

$b \rightarrow s \mu^+ \mu^-$ angular observables

For $B \rightarrow V \mu \mu$, differential decay rate can be described by 3 angles and q^2 :

Give access to observables with reduced deper on hadronic effects, e.g.:

Complementary constraints on NP & orthogonal experimental systematics compared to BR's

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \left. \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} \right|_{\mathrm{P}} = \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K + F_{\mathrm{L}} \cos^2 \theta_K + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_\ell + \frac{1}{4} (1 - F_{\mathrm{L}}) \sin^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\theta_\ell + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos 2\theta_\ell + S_5 \sin 2\theta_K \sin^2 \theta_\ell \cos 2\theta_\ell + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos 2\theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \theta_\ell \sin \theta_\ell \sin \theta_\ell \sin 2\theta_K \sin 2\theta_\ell \sin \theta_\ell + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \theta_\ell + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin^$$

ndence

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$
 [JHEP 1204 (2012) 104]

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis

Most precise result from LHCb's Run1+2016 data [4.7/fb]

• Global tension with the SM at 3.3σ

IOP - HEPP & AP 2022

[PRL 125 (2020) 011802]

$^{0}\mu^{+}\mu^{-}$ angular analysis

Compatible results from ATLAS, CMS and Belle, need more data to get to a conclusion

Angular analyses in other modes

More challenging experimentally, due to long-lived Ks • Global tension with the SM at 3.3σ

- ► No self-tagging final state, different set of observables accessible to untagged analysis
- Compatible with SM at 1.9σ

Angular analyses in other modes

Suggestive similar trend in several $b \rightarrow s\mu\mu$ decays, but we need more data

Lepton Flavour Universality tests

- In the SM, couplings of gauge bosons lepton flavour universal
 - Branching ratios of e, μ and τ differ only due to lepton mass

$$R_K = \frac{\int \frac{\mathrm{d}\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int \frac{\mathrm{d}\Gamma(B^+ \to K^+ e^+ e^-)}{\mathrm{d}q^2} \mathrm{d}q^2} \stackrel{\mathrm{SM}}{\cong} 1$$

- - ▶ QED corrections can be up to O(10⁻²) [EPJC 76 (2016) 8,440]

Very well predicted in the SM \Rightarrow Any significant deviation is a smoking gun for NP

Hadronic contributions cancel in the ratio, uncertainties O(10-4) [JHEP 07 (2007) 040]

LFU measurements at LHCb

- Measure R_K as a double ratio, relative to equivalent ratio for $B^+ \to K^+ J/\psi(\ell \ell)$ decays
 - reduces impact of the differences in efficiency between electrons and muons

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))}$$
$$= \frac{N(K^{+}\mu^{+}\mu^{-})}{N(K^{+}J/\psi(\mu^{+}\mu^{-}))} \cdot \frac{N(K^{+}J/\psi(e^{+}e^{-}))}{N(K^{+}e^{+}e^{-})}$$
$$\cdot \frac{\varepsilon(K^{+}J/\psi(\mu^{+}\mu^{-}))}{\varepsilon(K^{+}\mu^{+}\mu^{-})} \cdot \frac{\varepsilon(K^{+}e^{+}e^{-})}{\varepsilon(K^{+}J/\psi(e^{+}e^{-}))}$$

R_K measurement

Combining this measurement of R_{κ} with

 $\mathscr{B}(B^+ \rightarrow K^+ \mu^+ \mu^-)$ from [LHCb, JHEP 06 (2014) 133]

 $\mathrm{d}\mathcal{B}(B^+ \to K^+ e^+ e^-) \,|\,$ $= (28.6^{+1.5}_{-1.4}(\text{stat}) \pm 1.4(\text{syst})) \times 10^{-9} c^4/\text{GeV}^2$ $\mathrm{d}q^2$ $|_{1.1 < q^2 < 6.0}|$

Talk by M. McCann (30 July)

[LHCb, Nature Phys 18 (2022) 277]

Full Run1 & Run2 result

 $R_K = 0.846 \stackrel{+0.042}{_{-0.039}}(\text{stat}) \stackrel{+0.013}{_{-0.012}}(\text{syst})$

Consistency with the SM expectation at **3.1** σ

P. Álvarez Cartelle (Cambridge)

Other $b \rightarrow s\ell^+\ell^-$ decays

New measurements of R_{K^*+} and R_{KS} , compatible with the SM at 1.5σ and 1.6σ

IOP - HEPP & AP 2022

Global fit to $b \rightarrow s\ell\ell$ measurements

Perform a fit to all measurements, to establish what WC's are preferred by the data

- Best fit point in tension with the SM: significance of $4-7\sigma$ depending on scenario/inputs
- Tension between $R(*) \& b \rightarrow s\mu + \mu observables$ (could be reduced by LFU contribution to C9)

Critical to improve the precision in all of these measurements to clarify this picture

[Similar fits by M. Algueró et al., C. Cornella et al., L-G. Geng et al. and many others]

How do we find out more?

From LHCb many results still to come from Run1+2 data

- LFU test in different channels: RK*0, Rφ, RKππ...
- Update of angular observables of b \rightarrow sµ+µ– decays
- Measurements of b \rightarrow stt processes and LFV involving τ's

and start of Run3 opens the door to a very significant jump in precision and access to 'rarer' processes

How do we find out more?

 ATLAS and CMS have a dedicated B-physics programme, with active effort into rare decays

 Belle II, a dedicated flavour experiment at KEK (Japan) starting to join in the exploration of the anomalies

P. Álvarez Cartelle (Cambridge)

Summary

- Rare B-hadron decays offer an excellent tool to search for NP
 - understand what they mean
- Run2 dataset, and Run3 just started!
 - Crucial interplay between LHCb, ATLAS, CMS and Belle II

Exciting times for flavour physics

Interesting anomalies arising in $b \to s \ell \ell$ transitions, need more data to

Luckily, many results expected with the full exploitation of LHC's

Backup

Connection with charged currents

Several analyses also try to connect the rare decays anomalies with LFU in charged currents

• Successful simplified models use e.g. vector leptoquarks

Radiative decays

• Photons from radiative penguins predominantly left-handed in the SM

► C₇ (C₇') is the left(right)-handed $b \rightarrow s\gamma$ effective coupling

IOP - HEPP & AP 2022

t, c, u

LFU measurements at LHCb

- Electrons lose a large fraction of their energy through Bremsstrahlung radiation
 - Bremsstrahlung recovery: Look for photon clusters in the calorimeter (ET > 75 MeV) compatible with electron direction before magnet
- After this correction electrons still have
 - Lower reconstruction/trigger/PID efficiency
 - Worse mass and q2 resolution (more background)

 $B^0_S \rightarrow \phi \mu^+ \mu^-$ and $B^0_S \rightarrow f_2 \mu^+ \mu^-$

[LHCb, arXiv:2105.14007]

- Update using full Run1+Run2 dataset • In the region $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$ $d\mathscr{B}(B_s^0 \to \phi \mu^+ \mu^-)/dq^2 = (2.88 \pm 0.21) \times 10^{-8}$
 - Tension with the SM at 3.6 σ level
 (1.8 σ with LCSR alone)
- First observation of $B_s^0 \to f'_2(1525) \ \mu^+\mu^-$ [9 σ] $\mathscr{B}(B_s^0 \to f'_2\mu^+\mu^-) = (1.57 \pm 0.19 \text{ (stat)} \pm 0.06 \pm 0.06 \pm 0.08 \pm$

Talk by <u>C. Langenbruch</u> (30 July)

P. Álvarez Cartelle (Cambridge)

 $B^{0}(S) \rightarrow \mu^{+}\mu^{-}$: New LHCb result

• Full Run1+2 LHCb sample

- Find $B_s \rightarrow \mu^+ \mu^-$ with significance >10 σ , but no evidence yet for $B^0 \rightarrow \mu^+ \mu^-$ (1.7 σ)

• Updated effective lifetime $\tau_{eff}(B_s^0 \rightarrow \mu^+ \mu^-) = 2.07 \pm 0.29 \pm 0.03$ ps

• Main BR systematics from f_s/f_d (3%) improved from an updated hadronisation fraction [LHCb, <u>arXiv:2103.06810</u>]

IOP - HEPP & AP 2022

[LHCb-PAPER-2021-007] [LHCb-PAPER-2021-008] in preparation

• Set a limit also for the radiative decay (ISR) $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_u + \mu^- > 4.9 \text{GeV}} < 2.0 \times 10^{-10} \text{ (95 \% CL)}$

Search for $B^+ \to K^+ \nu \bar{\nu}$

Purely weak penguin

 $\mathscr{B}^{\rm SM} = (4.6 \pm 0.5) \times 10^{-6}$

[Blake et al, PPNP 92 (2017) 50]

Very challenging experimentally

New Belle II analysis, reaches competitive sensitivity using just 63/fb of integrated luminosity

Talk by <u>S. Kurz</u> (29 July)

Lepton Flavour Non-Universal effects in the SM? [Phys. Rev. D105 (2022) L031903]

 It was recently proposed that the photons from decays of the kind:

$$B \to K \pi^0 (\to e^+ e^- \gamma) \gamma$$

could be added to the electrons as bremsstrahlung photons mimicking the rare modes $B \rightarrow Ke^+e^-$ and emulate an excess of the electrons

- Effect was estimated in [arXiv:2110.11209] to be at 4% order
- If this was the case we would observe an accumulation of events below $q_{\text{TRACK}}^2 = m_{\pi^0}^2$ where

$$q_{\text{TRACK}}^2 = (p_{\text{TRACK}}(e^+) + p_{\text{TRACK}}(e^-))$$

Is the dilepton invariant mass computed using only track information (and no bremsstrahlung recovery)

D. Lancierini (Universität Zürich)

LFU tests at LHCb 13

D. Lancierini, Moriond EW, 2022

 $))^{2}$

Number of fully selected events with $q_{\text{TRACK}}^2 < m_{\pi^0}^2$ that enter the R_K result are < 1 per-mille

18. March 2022

