

European R&D Roadmaps

Iacopo Vivarelli University of Sussex

The European Committee for Future Accelerators

IOP 2022 - Joint APP/HEPP Conference

EUROPEAN STRATEGY FOR PARTICLE PHYSICS

Accelerator R&D Roadmap

ECFA
European Committee
for Future Accelerator

See also:

<u>P. Allport - Detector R&D Roadmap - Plenary ECFA</u>
<u>D. Newbold - Accelerator R&D Roadmap - Plenary ECFA</u>
<u>S. Kühn - Overview of detector R&D - Lepton-Photon 2021</u>



- The physics case for new collider facilities is spelled out quite clearly:
 - Precision Higgs/EW/Top physics, dark matter, naturalness (hierarchy, but also strong CP phase) and all this assuming no deviation from SM at (HL-)LHC.
- The role of ECFA (European Committee for Future Accelerators) and LDG (Laboratory Directors Group) is to bring the community to a decision about the "best" direction.

- However, "best" must take into account technology and resources availabilities, timelines, costs.
- Where does the community want the field to go? Discussed in the <u>update to European strategy (2020)</u>.
- Do we need more information? How do we get there? The roadmapping exercise is about putting names on the roads, distances, and, in some case, costs.

The European Strategy Update

- The roadmapping exercise comes following explicit recommendations of the EPPSU. From the deliberation document:
 - "The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology, [...]. Deliverables for this decade should be defined in a timely fashion [...]"
 - "[...] **Detector R&D programmes** and associated infrastructures **should be supported** at CERN, national institutes, laboratories and universities. [...] The community should define **a global detector R&D roadmap** that should be used to support proposals at the European and national levels."

UNIVERSITY OF SUSSEX

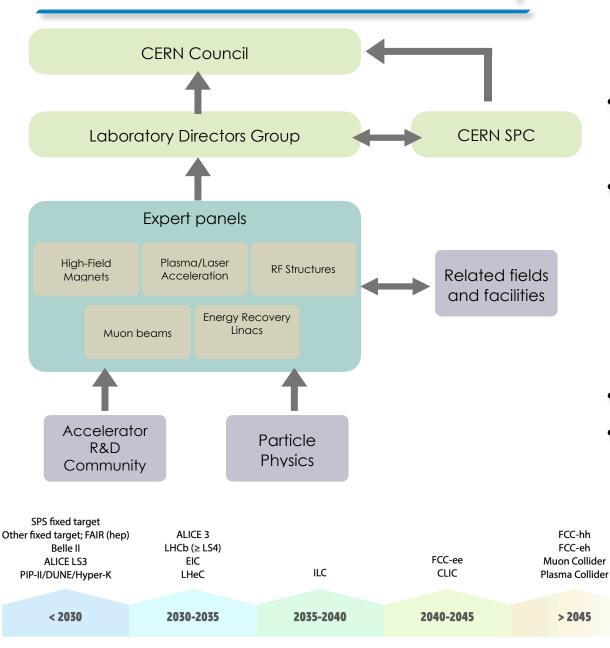
Which roadmaps?

<u>European Strategy for Particle Physics</u>
<u>- Accelerator R&D Roadmap</u>

<u>The 2021 ECFA Detector Research and Development Roadmap</u> (+ Synopsis)

- Each document developed by a dedicated panel of experts
- Panel chairs: **D. Newbold (RAL)** for accelerators, **P. Allport (Birmingham)** for detectors.
 - More details about panel composition in the documents and here

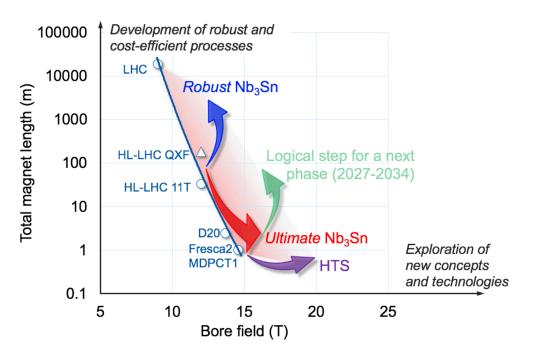
 Interaction with the community ensured by the panel members and well-attended symposia (+ consultation surveys for detectors)


Example: attendance to the detector panel symposia, spring 2021

	TF7	TF8	TF2	TF5	TF3	TF1	TF9	TF4	TF6
Unique users	369 + 123 webcast*	154 + 17 webcast*	197 + 5 webcast*	220	504	339	105	207	201
Max. number of concurrent views	230 + 123 webcast*	76 + 17 webcast*	130 + 5 webcast*	100	275	191	59	110	115

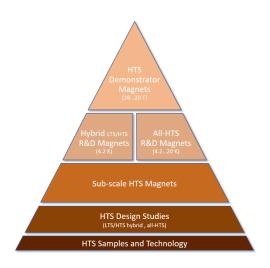
- In UK: interaction happening also through the **Particle Physics Technology Advisory Panel** (PPTAP more details tomorrow)
 - Created to draft **UK response/policy document** while gathering input for the European process.
 - For detector roadmap, I.V. acted as national contact (gathering survey responses and comments on roadmap document drat).

Accelerator roadmap



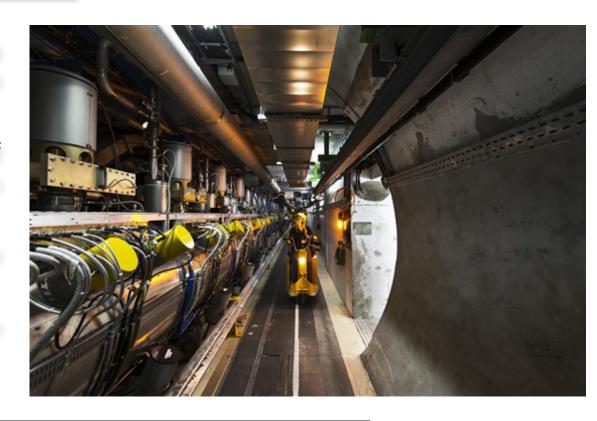
- Scope: define a programme to enable a community decision about next accelerator facility for next EPPSU.
- Questions to be answered:
 - What R&D is missing? Priorities?
 - Timeline and cost, alternative solutions and trade offs
 - Interdependencies and conflicts
 - Intermediate science output.
- Time-span: 5 to 10 years
- Planning:
 - Varying "readiness", from engineering to emerging technology

Three baseline funding scenarios (Nominal, Aspirational, Minimal) considered.

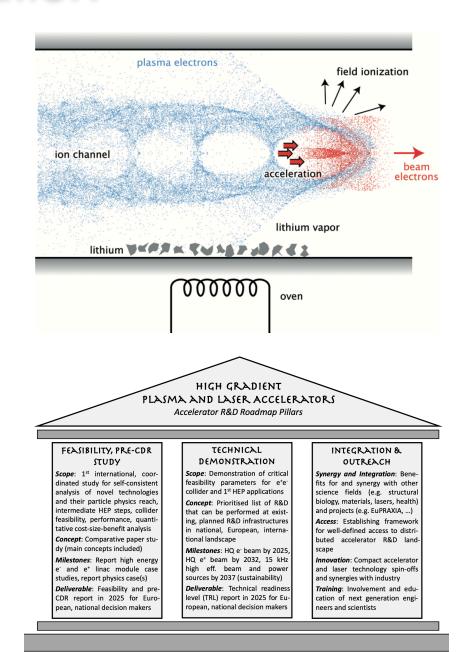


Powering and Infrastructures and Cryogle life and Protection Infrastructures and Cryogle life and Protection Infrastructures and Cross-cutting activities

Cross-cutting activities

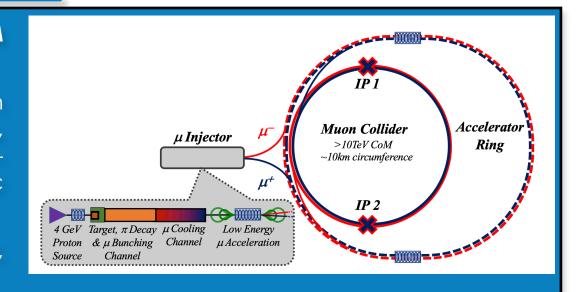

- Magnetic field strength and target energy define the required field strength.
- High-energy frontiers requires high-field
 (16 T and above) magnets:
 - Nb₃Sn promising. Need to improve in reliability, robustness, cost while improving performance. R&D steps with quick intermediate turnaround demonstrators defined (for conductors and full magnets).
 - High-Temperature Superconductors can increase field further, but a longer way to go to achieve a full-scale system.

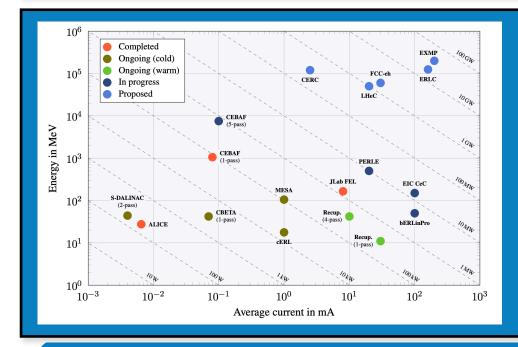
- Radio-frequency cavities are the "accelerating" component of an accelerator.
- RF power a significant fraction of the wall-plug power cost of an accelerator
 - Emphasis on efficiency crucial for a "green" accelerator facility.
- Requirements vary depending on the facility one has in mind.


In general, main R&D aimed at:

- Maximising efficiency and optimisation of the system.
- Industrialisation for assembly and tuning.
- Diagnostic and feedback mechanism
- Development of new materials and structures

- Very hot topic, with significant investment.
- However, still in a development phase from a particle physics perspective.
 - Potential: accelerations of 10s GeV/m demonstrated (100-1000 better than RF).
 - Still to be demonstrated: simultaneous achievement of gradient, energy gain, charge, small energy spread, emittance, etc.
- Proposed R&D following three pillars of feasibility/pre-CDR, technical demonstration, integration and outreach.



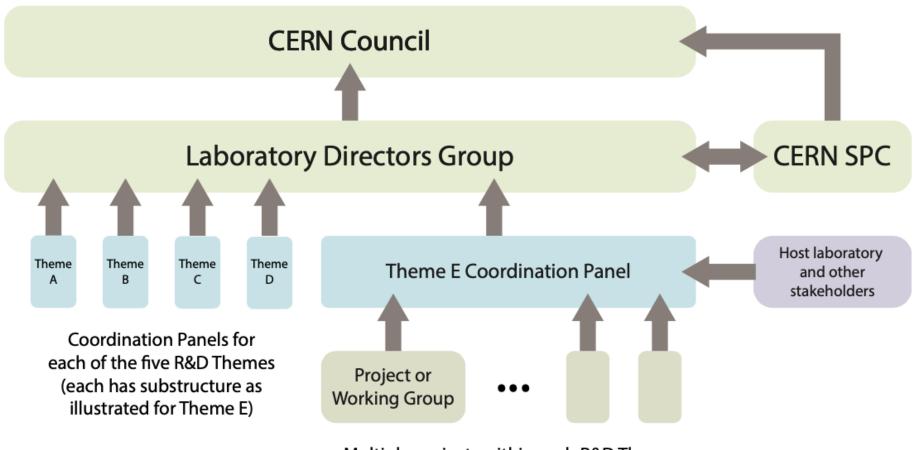


UNIVERSITY OF SUSSEX

Muon beams and ERL

- Muon colliders can deliver high CM energy with efficient use of power.
- However muons decay: challenges with muon cooling cells, neutrino radiation, technology for magnets (quick rampup) and RF (operations in high magnetic field and low temperature).
- Benchmark defined on a 10 TeV collider, possibly with an intermediate 3 TeV.

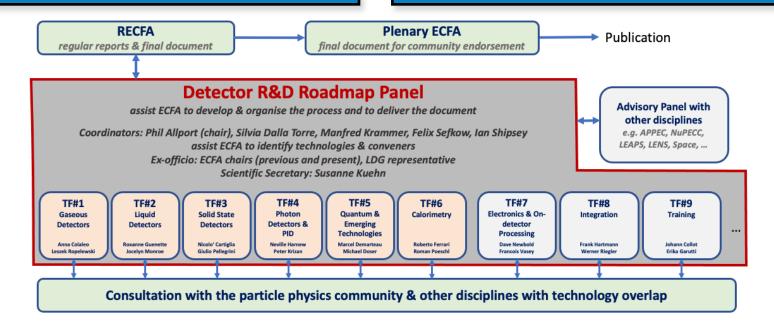
- In an ERL, the electron **energy is "recycled"** after the beam use.
- •One can **achieve high beam power** with moderate RF power ⇒ promising way to "green" ee or eh machines.
 - Need to gain one or more orders of magnitude for the future needs.
- R&D largely done using existing facilities.



Accelerator Summary and Recommendations

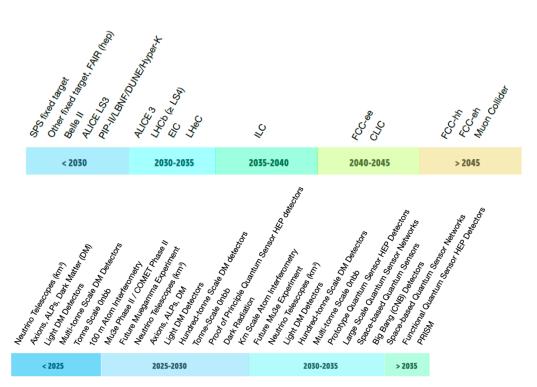
- The document identifies a set of common themes, and gives 10 general recommendations:
 - They recommend to maintain a **broad front of R&D**, with funding at least corresponding to the minimal scenario. There should be **room for novel developments** as well.
 - Prompt scientific exploitation should be emphasized where possible.
 - Environmental (but not only) sustainability should be a primary consideration.
 - Links and collaborations between different European laboratories and with industry are key: industrial norms should be adopted to widen the applicability of new developments
 - **Training and professional development** of accelerator physicists is a key factor in sustaining a vibrant and productive field.

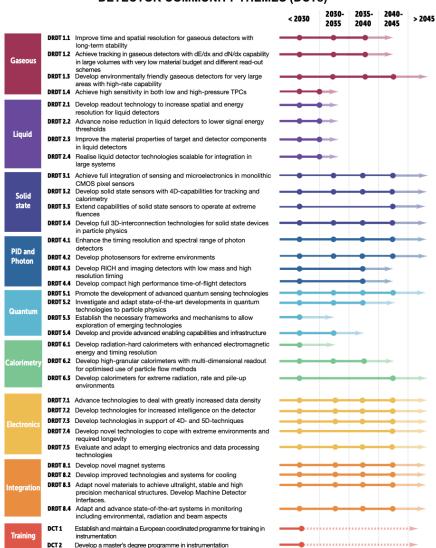
Accelerator coordination structure


Multiple projects within each R&D Theme

Detector R&D roadmap

- Given the future physics programme, identify the main technology R&D to be met so that detectors ar not the limiting factor for the timeline.
- Detector context considered:
 - Full exploitation of LHC
 - Long baseline neutrinos
 - Detectors for future Higgs-EW-Top factories (in all manifestations)
 - Long term vision for 100 TeV hadron collider


- Future muon colliders
- Accelerator setup for rare decays/dark matter
- Experiments for precision QCD
- Non accelerator experiments (reactor neutrinos, double beta decay, dark matter)


Structure of the document

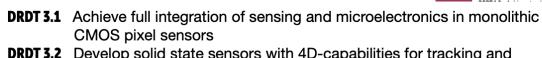
 DRDTs define for each area the theme or R&D to be performed.

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

Structure of the document

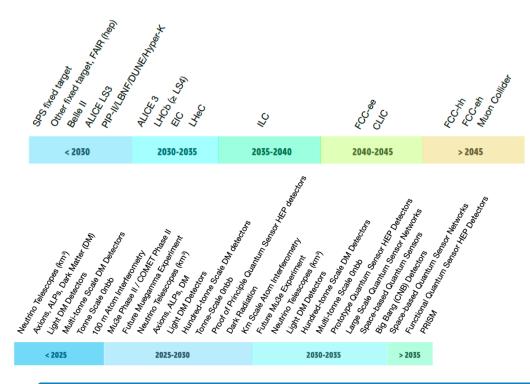
> 2045

2035


2040

2045

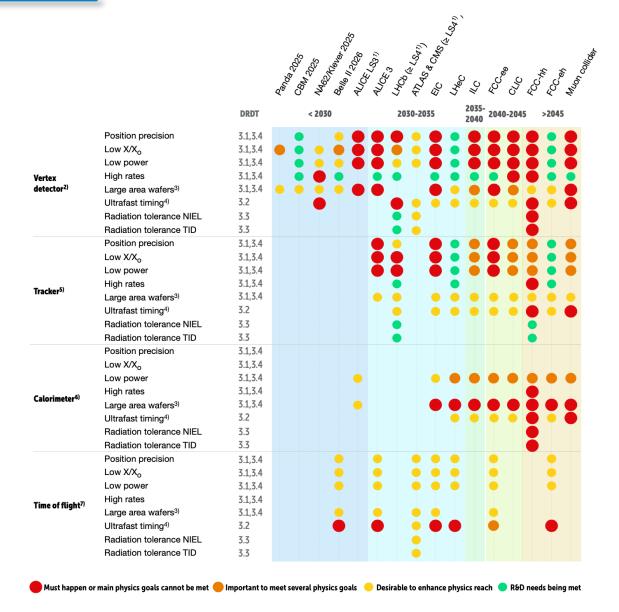
 DRDTs define for each area the theme or R&D to be performed.


DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

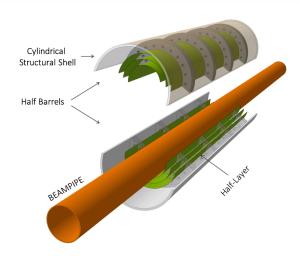

DRDT 1.1 Improve time and spatial resolution for gaseous detectors with

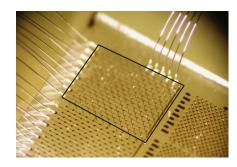
Solid state

- **DRDT 3.2** Develop solid state sensors with 4D-capabilities for tracking and calorimetry
- **DRDT 3.3** Extend capabilities of solid state sensors to operate at extreme fluences
- **DRDT 3.4** Develop full 3D-interconnection technologies for solid state devices in particle physics



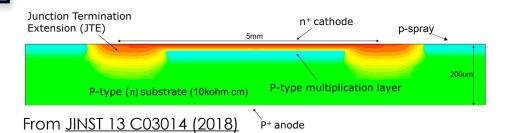
Solid state detectors


- Some of the challenges to be met:
 - Vertex detector high resolution ($\leq 3~\mu m$), low mass ($X/X_0 < 0.05~\%$, already for e⁺e⁻ colliders), low power and high radiation hardness (up to ~10¹⁸ n_{eq/}cm² for hadron colliders).
 - Trackers: reliable affordable sensors - low power
 - Calorimeters: large-area, and affordable
 - Time resolution of 10-100 ps for PID/ToF
 - Integrated, etc.



Solid state detectors - technologies

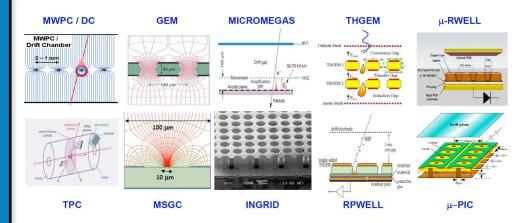
- CMOS MAPS provide **high spacial resolution** and **small material** (integrated circuitery)
- Used in a number of experiments current time resolution ~ 100 ps, rad tolerance up to 1×10^{15} n_{eq}/cm^2 (Malta Monopix with modified TowerJazz (180 nm)
- Main R&D items:
 - Smaller pixel pitch
 - Stitching for large areas
 - Increased radiation hardness and reduced power consumption

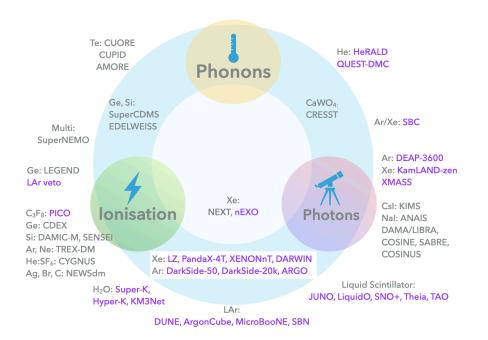


Bent sensor wafers for ALICE upgrade Taken from <u>M.Mager, IAS Program on</u> high energy physics

Diamond sensor bonding, taken from http://dx.doi.org/10.1016/j.nima.2015.03.03

Thin and 3D silicon sensors operated at $\sim 10^{16}$ n_{eq}/cm². Non-silicon sensors (diamond for example) target to achieve resistance to extreme fluences.



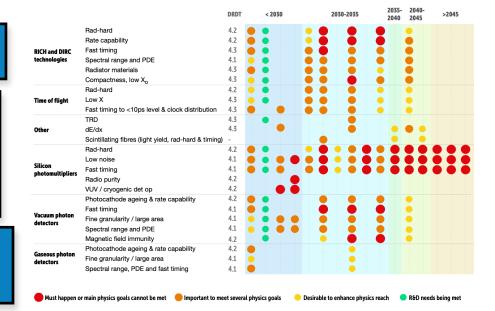

- 4D tracking (adding precise time information) a necessity in high-pileup configurations
- Low Gain Avalanche Detectors can achieve \sim 20 ps for 50 μm sensors for O(10 μm) resolution and 10^{15} n_{eq}/cm² radiation tolerance

Gas and liquid detectors

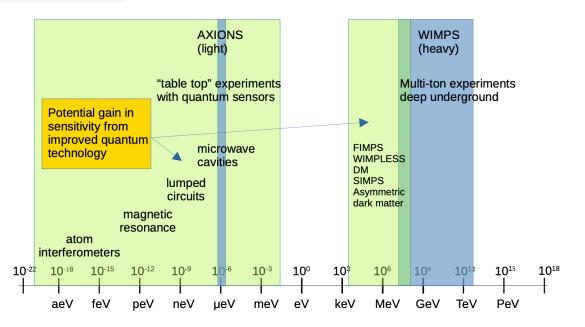
- Gaseous detectors ideal for large-area coverage with low material budget.
- Good timing performance → suited for TOF, etc.
- Micro Pattern Gas Detectors (in their different forms) widely used in LHC upgrades (ATLAS NSW, CMS GEM, etc.)
- Eco-gas a priority for future collider needs.

- Liquid detectors: a rapid development field, shorter period of R&D outlined.
- Main liquid detector challenges:
 - Readout: spacial resolution, lowenergy threshold.
 - Multi-ton, high-purity experiments (e.g. DM direct searches) target doping, purification, components radiopurity.

PID, photodetectors and quantum technologies


115

Particle identification used on a variety of different experiments (LHCb RICH upgrade is one example)

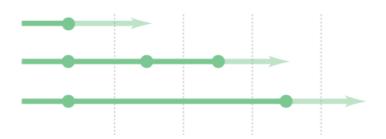

SiPM flexible and cheap. Will be used in LB neutrino experiments and colliders applications.

Main R&D items: extension of **efficiency to near UV**, reduction of **dark count**, increased **radiation hardness**.

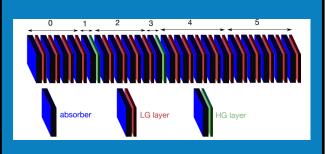
MCP-PMT and LAPPD good candidates for **large area coverage**, but at the moment expensive (also need to improve magnetic field tolerance)

- Quantum sensors promise to have significant impact on particle phsyics.
- Many different technologies being considered/developed (clocks, spinbased sensors, superconducting electronics, 3D microwave cavities, optomechanical sensors, interferometry)

Calorimeters



Calorimetry

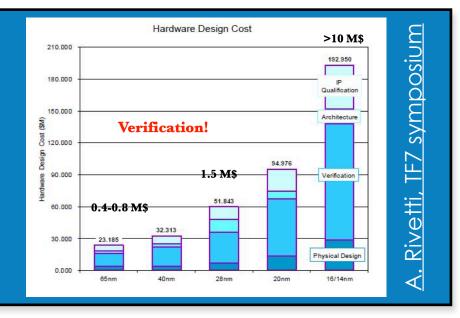

DRDT 6.1 Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution

DRDT 6.2 Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods

DRDT 6.3 Develop calorimeters for extreme radiation, rate and pile-up environments

DRDT 6.1 - example MAPS
based FOCAL EM calorimeter
R&D for ALICE forward
calorimetry (SiW calorimeter exploring hit counting)

DRDT 6.3 - connection with electronics and solid state detectors - design of a 4D calorimeter (including timing) DRDT 6.2 - Different approaches (high-granularity Si or scintillator based, crystal- or fiber-based dual readout, LAr) - **largely complementary technologies** (with different R&D cha<u>llenges</u>)

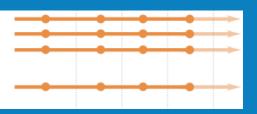


Duaal readout EM prototype

Electronics and integration

- Main challenges on electronics: high granularity and resolution, precision timing, etc. imply a cost in processing and eventually power → need latest advances in high-speed links and microelectronics.
- However very specific need for PP in terms of, e.g., radiation hardness.
- Call for a change of approach from the past with increased coordination around Europe

- Detector **magnetic system development**, including expert design and modelling software is a priority for almost all future experiments/facilities.
- Cooling technologies to **improve efficiency and reduce amount of material** (micro-channeling, improved air flows, etc.)
- Ultra low mass precision mechanics for machine/detector interface.

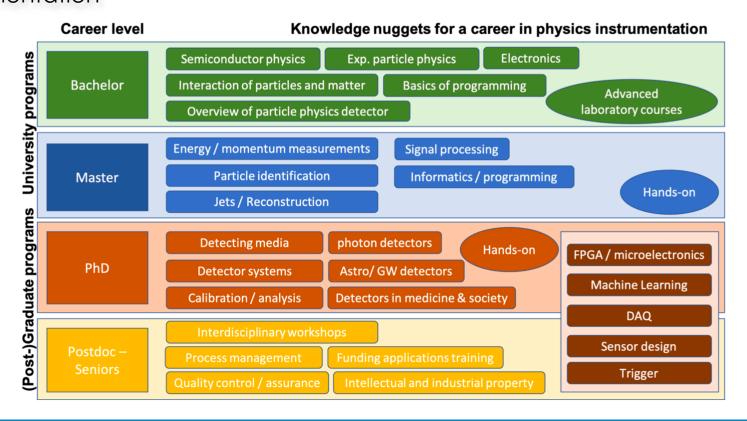


DRDT 8.1 Develop novel magnet systems

DRDT 8.2 Develop improved technologies and systems for cooling

DRDT 8.3 Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.

DRDT 8.4 Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects


Training

DCT 1 Establish and maintain a European coordinated programme for training in instrumentation

DCT 2 Develop a master's degree programme in instrumentation

- Training for a career in physics instrumentation is a key element (especially given the timescale of the projects).
- Specific recommendation for the development of an education programme in instrumentation

Generic strategic recommendations

- The document gives 10 General Strategic Recommendations (GSR see details in the backup):
 - **GSR 1** Supporting R&D facilities
 - **GSR 2** Engineering support for detector R&D
 - **GSR 3** Specific software for instrumentation
 - **GSR 4** International coordination and organisation of R&D activities
 - GSR 5 Distributed R&D activities with centralised facilities
 - **GSR 6** Establish long-term strategic funding programmes
 - GSR 7 Blue-sky R&D
 - **GSR 8** Attract, nurture, recognise and sustain the careers of R&D experts
 - **GSR 9 Industrial partnerships**
 - **GSR 10 Open Science**

General strategic recommendations

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

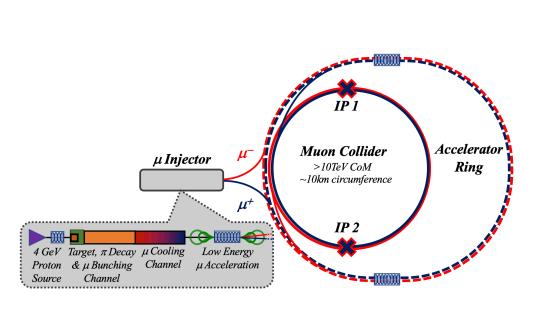
Summary

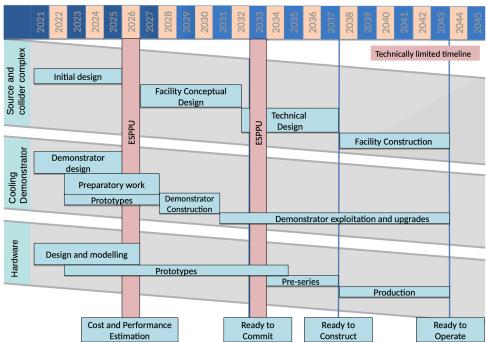
- The **scale and complexity** of the next big particle physics facility requires a **common ground for R&D** at European level.
- ECFA and LDG roadmaps have defined the landscape of future R&D in Europe:
 - To define short- and mid-term goals to **help decision making process** in the context of the European strategy.
 - To define a **broad and versatile R&D programme** that can meet the challenges (not only technological) of the next decades.
- The roadmaps emerge from **a thorough consultation process** with the community.
- The UK research landscape is **largely aligned** with the roadmaps (and in many cases it is one of the driving forces).
 - Dedicated discussion in town hall meeting tomorrow on UK internal process(es).

Backup

Accelerators - recommendations

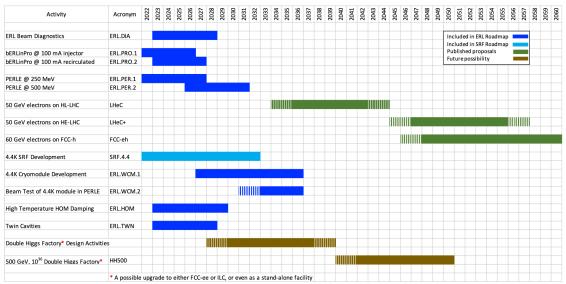
- [The Roadmap] should be accepted as the consensus view of the communities.
 - ▶ Further discussion, organisation, and prioritisation will be needed...
- Governance structures should oversee the ongoing R&D programmes, to ensure:
 - They are properly coordinated and balanced in their goals and execution
 - Their focus remains on implementation of the scientific goals of the European Strategy
 - Regular updates on progress are available to the community and to CERN Council.
- A broad front of R&D should be maintained, corresponding to at least the minimal [resource] scenario identified in each of the five areas.
- Provision must be left for the generation of novel developments
 - Revolutionary ideas have arisen via such routes in the past.
- Priority should be given to continuity of funding over the medium term,
 allowing the necessary investments in infrastructures and facilities
 - ▶ This is as important as the actual funding level.


Accelerators - recommendations

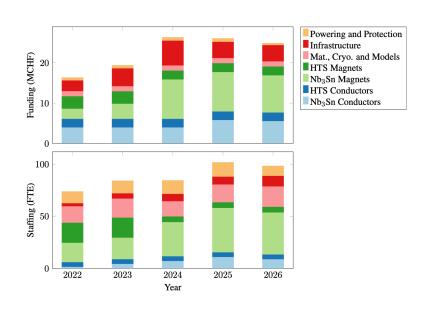

- Environmental sustainability should be a primary consideration
 - Objective metrics should allow judgment of the cost and impact of future facilities over their entire life cycle.
- Emphasis should be placed on prompt scientific exploitation of R&D outputs
 - Careful appraisal of the potential of novel R&D [on] nearer-term major facilities
- Practical considerations of manufacturing, assembly, testing, and commissioning should factor into the design and parameters of future machines with the close engagement of industry
 - Industrial norms should be adopted, widening the applicability of new developments, and increasing the potential return on investment for industry
- Close cooperation between European and international laboratories is required
- Training and professional development of accelerator physicists is a key factor in sustaining a vibrant and productive field
 - Preferably in concert with corresponding initiatives for detector-focused particle physicists and computing specialists

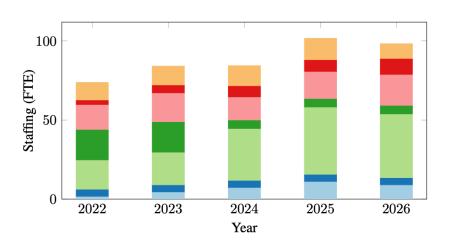
- Muon colliders are interesting because they can deliver high CM energy with efficient use of power.
- •However muon decay: challenges with muon cooling cells, neutrino radiation, technology for magnets (quick ramp-up) and RF (operations in high magnetic field and low temperature).
- Benchmark defined on a 10 TeV collider, possibly with an intermediate 3 TeV.

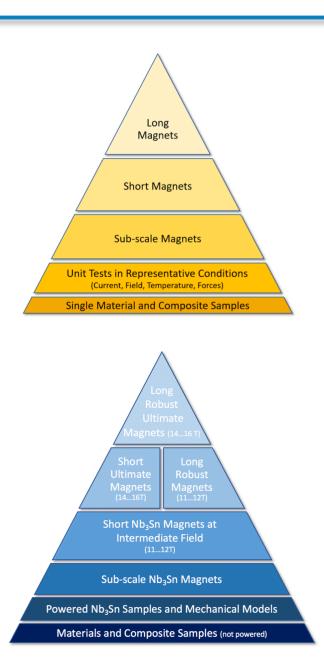




Energy Recovery Linacs

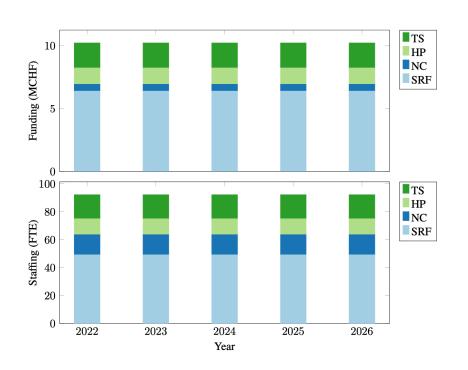

- •In an ERL, the electron energy is "recycled" after the beam use.
- One can achieve high beam power with moderate RF power.
- Need to gain one or more order of magnitude (or more) for the future needs.
- R&D largely using existing facilities.




Overview of estimated costs



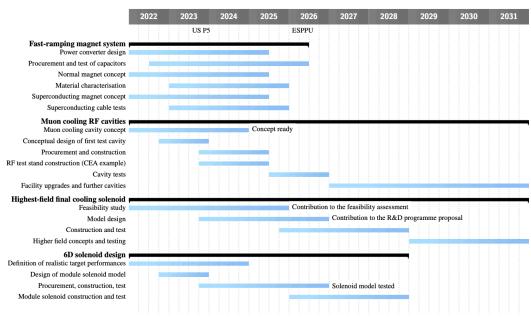
	Tasks	Begin	End	Description	Nom.	. 5 у	Nom.	7 y	Asp.	7 y	Min. 7 y	
					M	P	M	P	M	P	M	P
	MAG.LTSC.SOAP	2022	2025	Nb ₃ Sn conductors procurement	12.7	14.0	12.7	14.0	12.7	14.0	6.3	7.0
	MAG.LTSC.COND	2022	2026	Nb ₃ Sn conductors R&D evolution	11.0	17.5	11.0	17.5	49.5	62.5	11.0	17.5
	MAG.LTSC.CABL	2022	2025	Nb ₃ Sn cable R&D	2.2	10.5	2.2	10.5	2.2	10.5	2.2	10.5
	MAG.LTSC.ADVP	2022	2031	Advances Nb ₃ Sn conductors Industrialisation	0.0	0.0	7.2	7.0	7.2	7.0	3.6	3.5
	MAG.LTSC			Total of Nb ₃ Sn conductor	25.9	42.0	33.0	49.0	71.5	94.0	23.1	38.5
	MAG.HTSC.SOAP	2022	2027	State-of-the-art HTS Conductor procurement	3.9	10.0	5.5	14.0	5.5	14.0	2.8	7.0
	MAG.HTSC.COND	2022	2028	HTS conductors R&D and transfer to industry	5.5	7.0	5.5	7.0	5.5	7.0	0.0	0.0
	MAG.HTSC.CABL	2022	2027	HTS cable R&D	3.9	10.5	3.9	10.5	3.9	10.5	1.1	5.0
	MAG.HTSC			Total of HTS conductor	13.3	27.5	14.9	31.5	14.9	31.5	3.9	12.0
	MAG.LTSM.SMPL	2022	2027	Nb ₃ Sn powered samples	1.6	25.0	2.2	35.0	2.2	35.0	1.1	17.0
	MAG.LTSM.SUBS	2022	2028	Sub-scale Nb ₃ Sn magnets	7.1	35.0	9.9	49.0	9.9	49.0	5.0	25.0
	MAG.LTSM.SD12	2022	2028	Short Nb ₃ Sn magnets intermediate step (11–12 T)	7.3	30.3	7.3	30.3	7.3	30.3	3.7	16.7
	MAG.LTSM.LD12	2024	2031	Long robust demonstrators (11–12 T)	8.4	34.7	14.7	60.7	33.4	86.7	7.3	33.3
	MAG.LTSM.SD16	2024	2031	Short ultimate field	11.0	40.0	15.4	56.0	15.4	56.0	7.7	28.0
	MAG.LTSM			demonstrators (14–16 T) Total of Nb ₃ Sn magnets	35.4	165.0	49.5	231.0	68.2	257.0	24.8	120.0
	MAG.HTSM.DSGN	2022	2025		4.4	32.5	4.4	32.5	4.4	32.5	2.2	16.5
				HTS magnet design studies								
	MAG.HTSM.SUBS	2022	2027	Sub-scale HTS magnets	4.4	15.0	4.4	15.0	4.4	15.0	2.2	7.5
	MAG.HTSM.SRDM	2024	2029	HTS/LTS hybrid (4.2 K) and all-HTS (4.2–20 K) R&D magnets	3.3	0.0	6.6	12.0	25.3	52.0	3.3	6.0
	MAG.HTSM			Total of HTS magnets	12.1	47.5	15.4	59.5	34.1	99.5	7.7	30.0
	MAG.MCM.MTRL	2022	2031	Structural and composite materials Development and characterisation	4.4	32.0	6.6	41.0	6.6	41.0	3.3	20.0
	MAG.MCM.CRYO	2022	2028	Thermal management Cryogenics studies	2.2	37.0	2.2	37.0	2.2	37.0	1.1	18.0
	MAG.MCM.THME	2022	2027	Thermo-mechanical design studies	0.0	11.0	0.0	12.3	0.0	12.3	0.0	6.7
	MAG.MCM.MBSE	2022	2024		0.0	11.0	0.0	12.3	0.0	12.3	0.0	6.7
	MAG.MCM.MDLS	2022	2027	Multi-physics and multi-scales models development	0.0	11.0	0.0	12.3	0.0	12.3	0.0	6.7
	MAG.MCM		Total	of materials, cryogenics and models	6.6	102.0	8.8	115.0	8.8	115.0	4.4	58.0
i	MAG.IETI.INST	2022	2028	Instrumentation diagnostics R&D	2.2	10.0	2.2	10.0	2.2	10.0	2.2	10.0
	MAG.IETI.PINF	2022	2027	Cabling and magnet production R&D infrastructure	7.0	10.5	12.5	16.5	12.5	16.5	12.5	16.5
	MAG.IETI.TCON	2022	2025	Conductor test stations (LTS and HTS)	3.9	6.5	3.9	6.5	3.9	6.5	3.9	6.5
	MAG.IETI.TINS	2025	2029	Cables and insert test stations	0.0	1.5	5.5	4.0	5.5	4.0	5.5	4.0
	MAG.IETI.TMAG	2023	2029	Magnet test infrastructure	2.2	4.0	4.4	14.0	15.4	24.0	4.4	14.0
	MAG.IETI		Total	of infrastructures and instruments	15.3	32.5	28.5	51.0	39.5	61.0	28.5	51.0
	MAG.PETP.MDLS	2022	2026	Quench models development	0.0	4.0	0.0	5.0	0.0	5.0	0.0	5.0
	MAG.PETP.DSGN	2022	2028	Quench detection Protection design and analysis	1.1	18.0	1.1	20.0	1.1	20.0	1.1	10.0
	MAG.PETP.INST	2022	2026	Advanced quench Detection methods development	1.7	12.0	1.7	15.0	1.7	15.0	1.7	7.0
	MAG.PETP.PROT	2022	2026	Advanced quench protection Strategies and methods development	1.7	28.0	1.7	30.0	1.7	30.0	1.7	15.0
	MAG.PETP			Total of powering and protection	4.4	62.0	4.4	70.0	4.4	70.0	4.4	37.0
j				Total	112.9	478.5	154.4	607.0	241.3	728.0	96.7	346.5

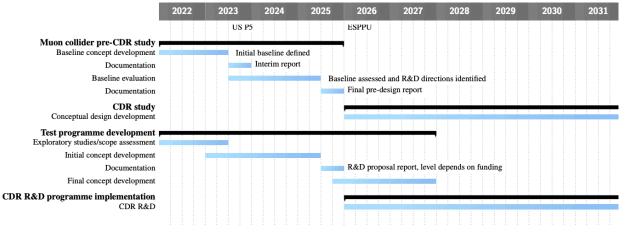


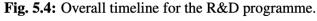
RF resource

Tasks	Begin	End	Description	MCHF	FTEy
RF.SRF.BKNb	2022	2026	Superconducting RF: bulk Nb	4	75
RF.SRF.FE	2022	2026	Superconducting RF: field emission	4	40
RF.SRF.ThF	2022	2026	Superconducting RF: thin film	15	100
RF.SRF.INF	2022	2026	Superconducting RF: infrastructure	5	15
RF.SRF.FPC	2022	2026	Superconducting RF: power couplers	4	16
RF.SRF			Total of superconducting RF	32	246
RF.NC.GEN	2022	2026	Normal conducting RF: general NC studies	0	27
RF.NC.MAN	2022	2026	Normal conducting RF: NC manufacturing techniques	2.5	30
RF.NC.HF	2022	2026	Normal conducting RF: mm wave & high frequency	0.2	15
RF.NC			Total of normal conducting RF	2.7	72
RF.HP.HE	2022	2026	High-power RF: high-efficiency klystron & solid state	5.5	20
RF.HP.HF	2022	2026	High-power RF: mm-wave & gyro devices	0	5
RF.HP.TUN	2022	2026	High-power RF: reduced RF power needs (tuners)	0.4	6
RF.HP.AI	2022	2026	AI and machine learning	0.6	26
RF.HP			Total of high-power RF	6.5	57
RF.TS.NCRF	2022	2026	NC RF test stands	5.3	40
RF.TS.MAT	2022	2026	Test stand: new materials	0.7	16
RF.TS.BEAM	2022	2026	Beam test	3	20
RF.TS.SRF	2022	2026	Test stand: SRF Horizontal cryostat	0.9	10
RF.TS			Total for test stand	9.9	86
			Total	51.1	461

Laser/Plasma acceleration


Tasks	Regin End	Description	MCHF	FTEy
PLA.FEAS.1		Coordination	WICIII	TILLY
PLA.FEAS.2	2022 2026	Plasma Theory and Numerical Tools		
PLA.FEAS.3	2022 2026	Accelerator Design, Layout and Costing		
PLA.FEAS.4	2022 2026	Electron Beam Performance Reach of Ad-		
		vanced Technologies (Simulation Results		
		- Comparisons)		
PLA.FEAS.5	2022 2026	Positron Beam Performance Reach of Ad-		
		vanced Technologies (Simulation Results		
		- Comparisons)		
PLA.FEAS.6	2022 2026	Spin Polarisation Reach with Advanced		
		Accelerators		
PLA.FEAS.7	2022 2026	Collider Interaction Point Issues and Op-		
		portunities with Advanced Accelerators		
PLA.FEAS.8	2022 2026	Reach in Yearly Integrated Luminosity		
		with Advanced Accelerators		
PLA.FEAS.9	2022 2026	Intermediate steps, early particle physics		
		experiments and test facilities		
PLA.FEAS.10	2022 2026	Study WG: Particle Physics with Ad-		
		vanced Accelerators		
PLA.FEAS		Total of Feasibility and pre-CDR Study	0.3	75
PLA.HRRP	2022 2026	High-Repetition Rate Plasma Accelerator	1.2	30
		Module		
PLA.HEFP	2022 2026	High-Efficiency, Electron-Driven Plasma	0.8	10
		Accelerator Module with High beam		
		Quality		
PLA.DLTA	2022 2026	Scaling of DLA/THz Accelerators	0.5	16
PLA.SPIN	2022 2026	Spin-Polarised Beams in Plasma Acceler-	0.35	16
		ators		
		Total	3.15	147


Parameter	Unit	Specification
Beam energy (entry into module)	GeV	175
Beam energy (exit from module)	GeV	190
Number of accelerating structures in module	-	\geq 2
Efficiency wall-plug to beam (includes drivers)	%	≥10
Bunch charge	pC	833
Relative energy spread (entry/exit)	%	\leq 0.35
Bunch length (entry/exit)	μm	\leq 70
Convoluted normalised emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm	≤ 135
Emittance growth budget	nm	\leq 3.5
Polarisation	%	$80 (\text{for e}^-)$
Normalised emittance h/v (exit)	nm	900/20
Bunch separation	ns	0.5
Number of bunches per train	-	352
Repetition rate of train	Hz	50
Beamline length (175 to 190 GeV)	m	250
Efficiency: wall-plug to drive beam	%	58
Efficiency: drive beam to main beam	%	22
Luminosity	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.5


Muon collider

Parameter	Symbol	Unit	T	Target value		CLIC
Centre-of-mass energy	$E_{ m cm}$	TeV	3	10	14	3
Luminosity	$\mathcal L$	$10^{34} \rm cm^{-2} s^{-1}$	1.8	20	40	5.9
Luminosity above $0.99 \times \sqrt{s}$	$\mathcal{L}_{0.01}$	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.8	20	40	2
Collider circumference	$C_{ m coll}$	km	4.5	10	14	_
Muons/bunch	N	10^{12}	2.2	1.8	1.8	0.0037
Repetition rate	f_r	$_{ m Hz}$	5	5	5	50
Beam power	$P_{ m coll}$	MW	5.3	14.4	20	28
Longitudinal emittance	ϵ_L	MeVm	7.5	7.5	7.5	0.2
Transverse emittance	ϵ	hom	25	25	25	660/20
Number of bunches	n_b		1	1	1	312
Number of IPs	$n_{ m IP}$		2	2	2	1
IP relative energy spread	δ_E	%	0.1	0.1	0.1	0.35
IP bunch length	σ_z	mm	5	1.5	1.07	0.044
IP beta-function	β	mm	5	1.5	1.07	
IP beam size	σ	$ m \mu m$	3	0.9	0.63	0.04/0.001

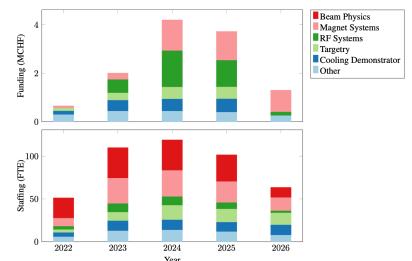
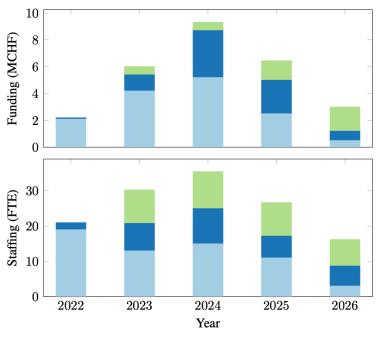
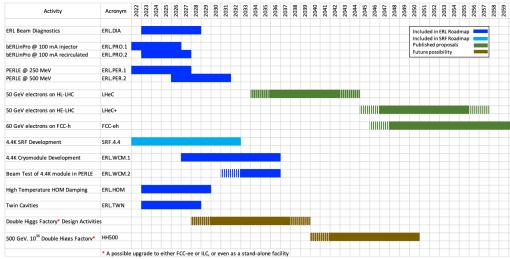



Fig. 5.7: Muon resource requirement profile in the aspirational programme.


US UNIVERSITY OF SUSSEX

Energy Recovery Linacs

Table 6.5: Total effort for the R&D program on energy recovery linacs as presented in this roadmap, providing the total number of FTE years and MCHF for the duration as indicated. More detailed information is provided with the charts for all topics as presented above. The table does not include in-kind and infrastructure contributions nor further investments in ongoing facilities.

Label		Description	FTEy	MCHF	Start	End
ERL.RD	sum	Key R&D Items	57	7.6	2023	2029
	HOM	Damping to high T	24.5	2.7	2023	2029
	TWN	Twin cavity module	13.5	3.5	2023	2028
	DIA	Beam instrumentation	19	1.4	2023	2027
ERL.PRO	sum	bERLinPro at Berlin	33	8.3	2022	2027
	PR1	100mA beam	16	2.4	2022	2026
	PR2	Recirculation	17	5.9	2023	2027
ERL.PER	sum	PERLE at Orsay	87	24.1	2022	2031
	PE1	250 MeV	64	14.6	2022	2027
	PE2	500 MeV	23	9.5	2026	2031

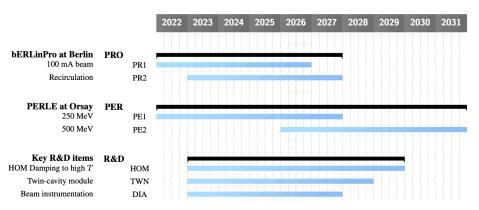
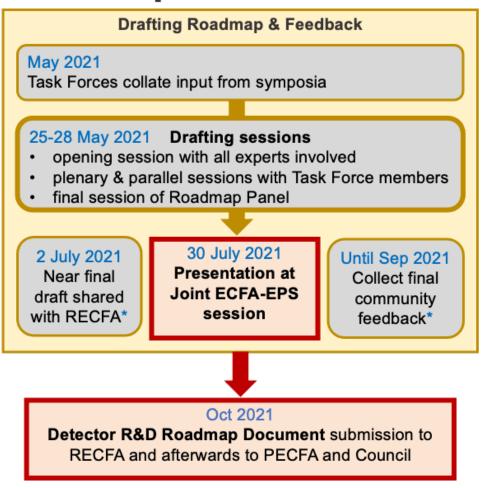
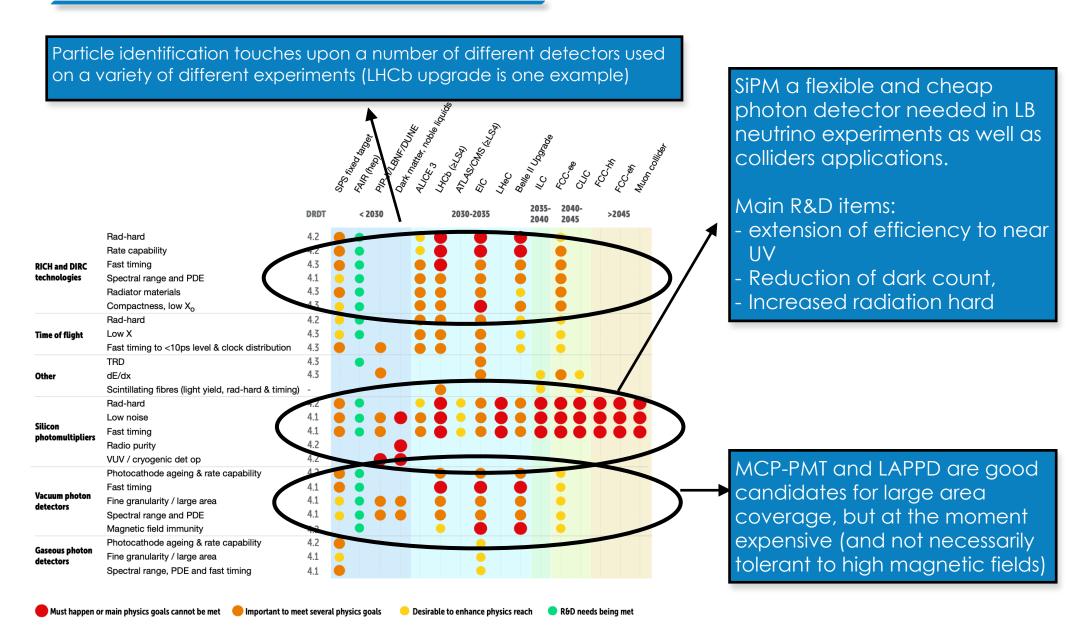


Fig. 6.4: Time lines of the key ERL roadmap themes.


Community consultation

ECFA Detector R&D Roadmap Process

Organisation May 2020 **EPPSU** mandate to ECFA to develop a roadmap for detector R&D efforts in Europe Sep 2020 Structure in place with **Detector R&D Roadmap Panel** Dec 2020 Task Forces active Website: https://indico.cern.ch /e/ECFADetectorRD Roadmap



*community feedback via RECFA delegates and National Contacts

Photon sensors - Particle Identification

Detector R&D Roadmap

GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: test beams, large scale generic prototyping and irradiation be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to ever more integrated detector concepts, requiring holistic design approaches and large component counts, the R&D should be supported with adequate mechanical and electronics engineering resources, to bring in expertise in state-of-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of state-of-the-art R&D-specific software packages must be maintained and continuously updated. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

Detector R&D Roadmap

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 7 – "Blue-sky" R&D

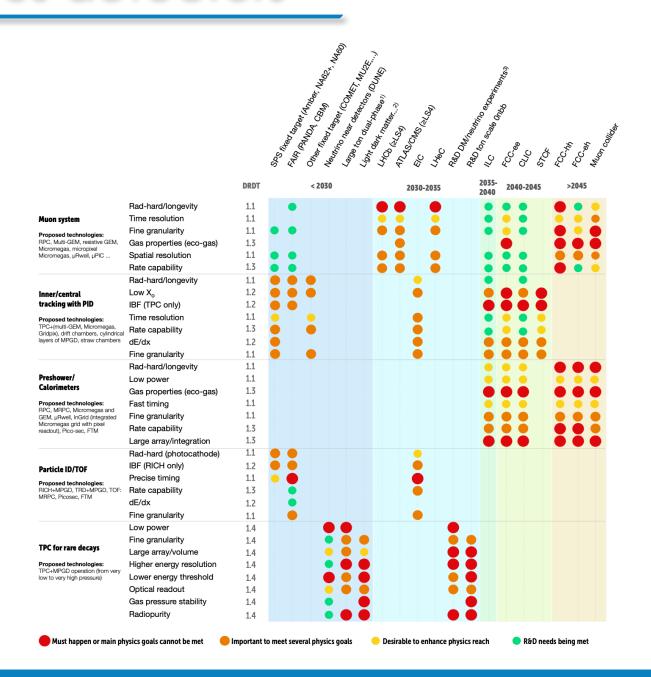
It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. "Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

Detector R&D Roadmap

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

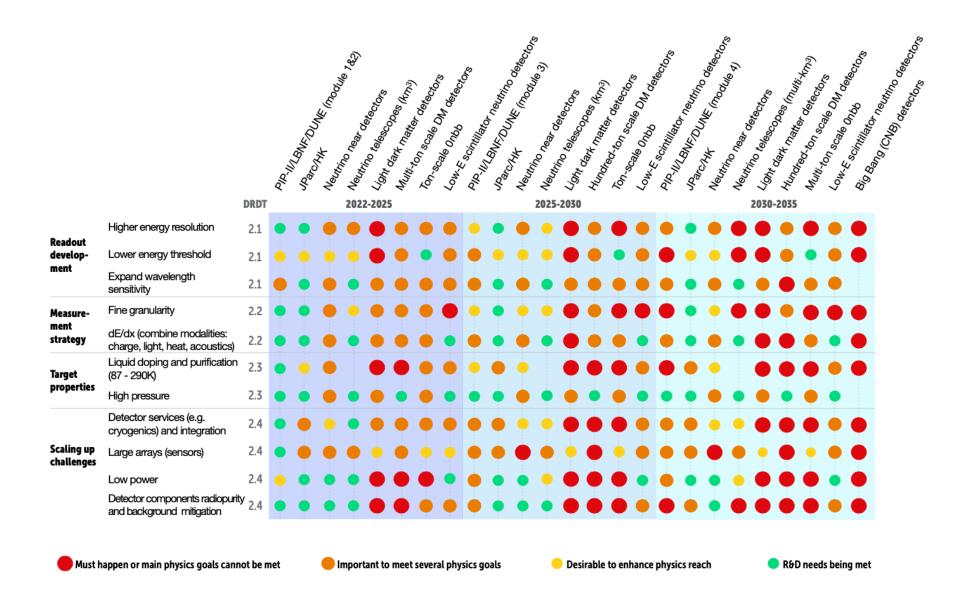
Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

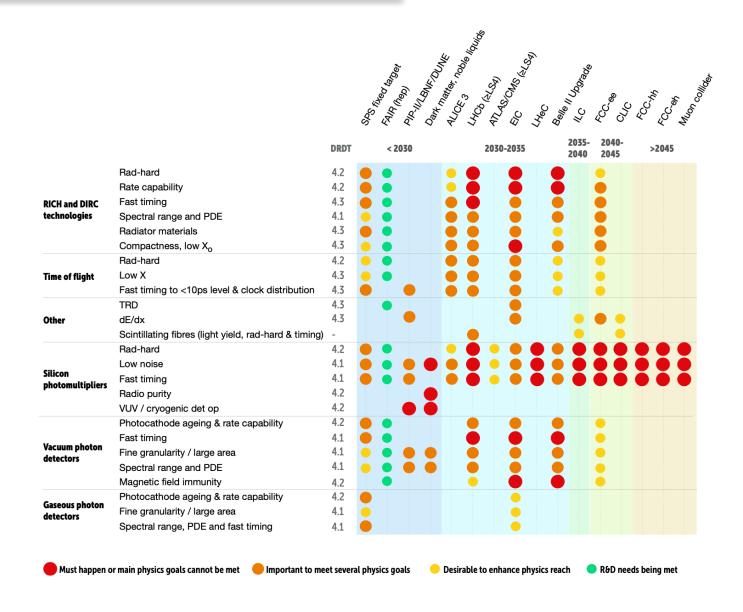

It is recommended to identify promising areas for close collaboration between academic and industrial partners, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry, in particular for developments in solid state sensors and microelectronics.

GSR 10 - Open Science

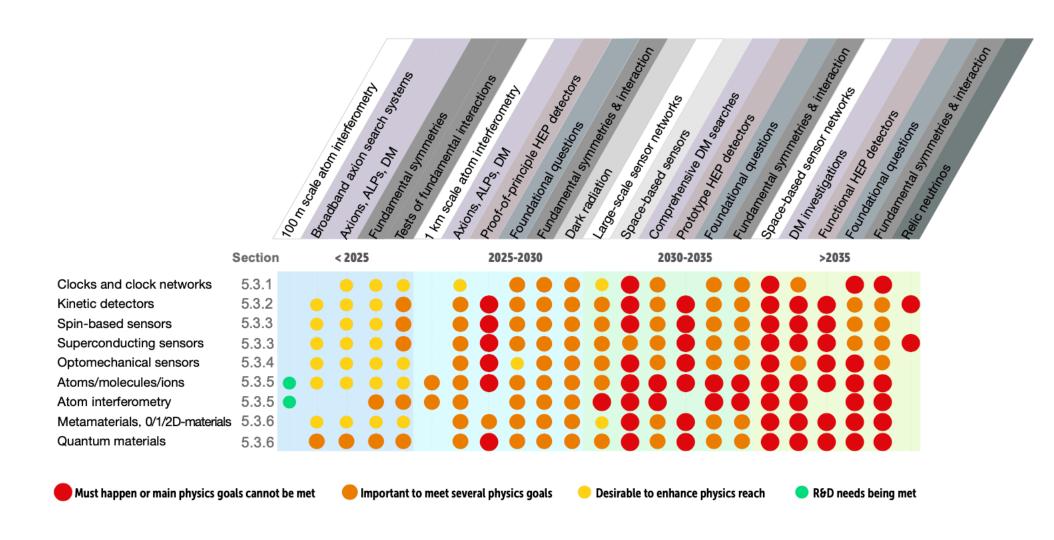
It is recommended that the concept of Open Science be explicitly supported in the context of instrumentation, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP³) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.



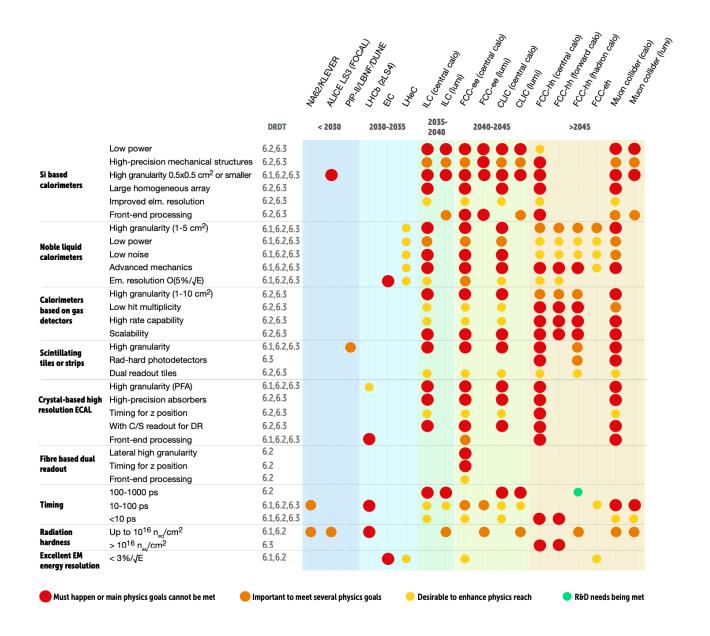
Gaseous detectors

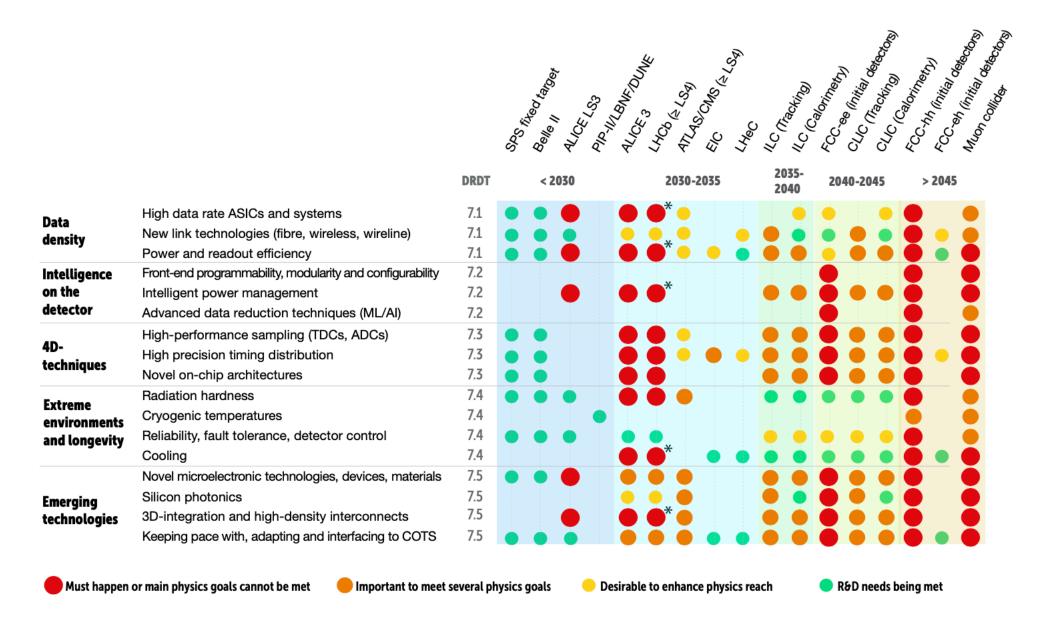

UNIVERSITY OF SUSSEX

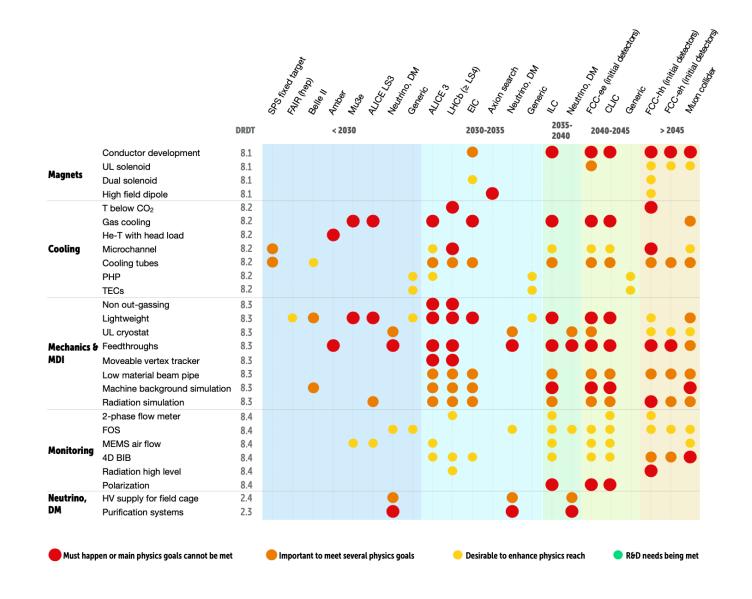
Liquid detectors



Photodetectors and PID


Quantum and emerging technologies





Electronics and Data Processing

Integration

