Heavy Flavour Physics

Jonas Rademacker (University of Bristol, LHCD)

Two Roads to New Physics

Direct observation

Effects of virtual particles

This approach is sensitive to particles far heavier than those directly produced in a collider. It is what flavour physics is about.

Two Roads to New Physics

Direct observation

Effects of virtual particles

LHCb: Nature Phys. 18 (2022) 1, 1-5
$-B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}-\bar{B}_{s}^{0} \rightarrow B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \quad$ Untagged

This approach is sensitive to particles far heavier than those directly produced in a collider. It is what flavour physics is about.

Flavour physics as a tool to discover New Physics

- Quark Flavour physics is the precision study of quark transitions.
- Sensitive to new particles that can be much heavier than those directly produced.
- Very successful in the past:
- Charm quark predicted based on the suppression Flavour Changing Neutral Currents (FCNC).
- Top/bottom quark predicted based on the observation of CP violation.
- Only serious indications of physics beyond SM today stem from this approach.

Flavour physics as a tool to discover New Physics

- Quark Flavour physics is the precision study of quark transitions.
- Sensitive to new particles that can be much heavier than those directly produced.
- Very successful in the past:
- Charm quark predicted based on the suppression Flavour Changing Neutral Currents (FCNC).
- Top/bottom quark predicted based on the observation of CP violation.
- Only serious indications of physics beyond SM today stem from this approach.
at a time
when only
these had been seen...

Flavour physics as a tool to discover New Physics

- Quark Flavour physics is the precision study of quark transitions.
- Sensitive to new particles that can be much heavier than those directly produced.
- Very successful in the past:
- Charm quark predicted based on the suppression Flavour Changing Neutral Currents (FCNC).
- Top/bottom quark predicted based on the observation of CP violation.
- Only serious indications of physics beyond SM today stem from this approach.

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the Standard description of CP violation, and measurements, there is a huge discrepancy between

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the Standard description of CP violation, and measurements, there is a huge discrepancy between CPV in the SM and CPV in the universe.

There must be new sources of CP violation.

CP violation is an interference effect

CP violation is an interference effect

CP violation is an interference effect

LHCb: JHEP 02 (2021) 169

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

CP violation is an interference effect

[^0]
CP violation is an interference effect

 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

CP violation is an interference effect

 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

CP and flavour tagged D° at the charm threshold

CP and flavour tagged D° at the charm threshold

Measurements of $Z_{i}=c_{i}+i s_{i}=R e^{-i \delta}$ at BES III

BESIII: PRL 124 (2020) 24, 241802

Measurements of $Z_{i}=c_{i}+i s_{i}=R e^{-i \delta}$ at BES III

BESIII: PRL 124 (2020) 24, 241802
BESIII: JHEP 05 (2021) 164

[^1]
Unitarity triangle

CKM Fitter (2012): $\gamma=(66 \pm 12)^{\circ}$

Unitarity triangle

Now

Shown are 95\% CL constraints on apex of triangle from various measurements (@) and $\gamma(\square)$

LHCb: $\gamma=\left(65.4_{-4.2}^{+3.8}\right)^{\circ}$
LHCb: JHEP 12 (2021) 141

Unitarity triangle

Now

Shown are 95\% CL constraints on apex of triangle from various measurements (@) and $\gamma(\square)$

LHCb: $\gamma=\left(65.4_{-4.2}^{+3.8}\right)^{\circ}$

Unitarity triangle

Note: negligible theory error: JHEP 1401 (2014) 051

Model-independent analysis of charm mixing in $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

Uses same input from CLEO-C and BES III as for γ to remove amplitude model dependence

$$
m\left(D^{*}\right)-m(D) \text { in } D^{*+} \rightarrow D^{0} \pi^{+}, D^{0} \rightarrow K_{S} \pi \pi
$$

This is real data, not simulation. 30.6M signal events

First observation of mass difference between charm CP eigenstates.

LHCb: $x=3.98_{-0.54}^{+0.56}, x \neq 0$ at $5 \sigma \mathrm{CL}$ - first observation!

CP violation

New Particles

Plot by Patrick Koppenburg: https://www.nikhef.nl/~pkoppenb/particles.html

Charmonium

Really strange: First tetra flavour

Best fit with two new $D^{-} K^{+}$resonances, $X_{0}(2900), X_{1}(2900)$, which have minimal quark content $\bar{c} d \bar{s} u$.

Flavour anomalies

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$

$\frac{1}{\Gamma} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right.$
$-F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{\mathrm{L}}\right) A_{\mathrm{T}}^{(2)} \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \cos 2 \phi+$
$\sqrt{F_{L}\left(1-F_{\mathrm{L}}\right)} P_{4}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)} P_{5}^{\prime} \sin 2 \theta_{K} \sin \theta_{\ell} \cos \phi+$
$\left(1-F_{\mathrm{L}}\right) A_{R e}^{\mathrm{T}} \sin ^{2} \theta_{K} \cos \theta_{\ell}+\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)} P_{6}^{\prime} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+$
$\left.\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)} P_{8}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+(S / A) 9 \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]$

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}$

$\frac{1}{\Gamma} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{K} \mathrm{~d} \phi}=\frac{9}{32 \pi}\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}+\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{\ell}\right.$
$-F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{\ell}+\frac{1}{2}\left(1-F_{\mathrm{L}}\right) A_{\mathrm{T}}^{(2)} \sin ^{2} \theta_{K} \sin \theta_{\ell} \cos 2 \phi+$
$\sqrt{F_{L}\left(1-F_{\mathrm{L}}\right)} P_{4}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \cos \phi+\sqrt{F_{\mathrm{L}}\left(1, F_{\mathrm{L}}\right)} P_{5}^{\prime} \sin 2_{K} \sin \theta_{\ell} \cos \phi+$
$\left(1-F_{\mathrm{L}}\right) A_{R e}^{\mathrm{T}} \sin ^{2} \theta_{K} \cos \theta_{\ell}+\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)} P_{6}^{\prime} \sin 2 \theta_{K} \sin \theta_{\ell} \sin \phi+$
$\left.\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)} P_{8}^{\prime} \sin 2 \theta_{K} \sin 2 \theta_{\ell} \sin \phi+(S / A) 9 \sin ^{2} \theta_{K} \sin ^{2} \theta_{\ell} \sin 2 \phi\right]$

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}: \mathrm{P}^{\prime} 5$

See also Matthew Birch's talk in the today's parallel session after lunch

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}: \mathrm{P}^{\prime} 5$

Theory: JHEP 05 (2013) 137

See also Matthew Birch's talk in the today's parallel session after lunch

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}: \mathrm{P}^{\prime} 5$

Theory: JHEP 05 (2013) 137

See also Matthew Birch's talk in the today's parallel session after lunch

$B^{0} \rightarrow K^{*} \mu^{+} \mu^{-}: \mathrm{P}^{\prime} 5$

Theory: JHEP 05 (2013) 137

- Deviation from SM: 3.3 б global significance.

See also Matthew Birch's talk in the today's parallel session after lunch

$B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}:$P'5 $^{\prime}$

LHCb: PRL 126 (2021) 16, 161802

$B^{(0,+)} \rightarrow K^{*(0,+)} \mu \mu$ at CMS, ATLAS, BELLE

PLB 781 (2018) 517-541

Looking forward to the results from CMS "B-parking" dataset

For more on flavour physics at ATLAS, see Ondrej Kovanda's talk in Tue morning's parallel session

CMS: JHEP 04 (2021) 124

$B^{+} \rightarrow K^{+} \nu \bar{\nu}$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$vs $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$

$R(K)=\frac{\mathscr{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathscr{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}$, theoretically "clean" as hadronic effects cancel

+ further samples (different data taking periods, trigger lines)
$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$vs $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$

$$
R(K)=\frac{\mathscr{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)}{\mathscr{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(\mu^{+} \mu^{-}\right)\right)} / \frac{\mathscr{B}\left(B^{+} \rightarrow K^{+} e^{+} e^{-}\right)}{\mathscr{B}\left(B^{+} \rightarrow K^{+} J / \psi\left(e^{+} e^{-}\right)\right)}
$$

theoretically and experimentally "clean" as hadronic effects and detector effects cancel

+ further samples (different data taking periods, trigger lines)

$R(K): B^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
$-\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
$-\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \Phi \mu^{+} \mu^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \Phi \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \mu^{+} \mu^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \Phi \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0+} \mu^{+} \mu^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \Phi \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0+} \mu^{+} \mu^{-}$
- $\Lambda_{b} \rightarrow \wedge \mu^{+} \mu^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$
all involve same process:
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0+} \mu^{+} \mu^{-}$
- $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \Phi \mu^{+} \mu^{-}$
all involve same process:
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0+} \mu^{+} \mu^{-}$
- $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

Deviations in

- $\mathrm{B} \rightarrow \mathrm{K}^{* 0} \mu^{+} \mu^{-}$and $\mathrm{B} \rightarrow \mathrm{K}^{\star 0} \mu^{+} \mu^{-} / \mathrm{B} \rightarrow \mathrm{K}^{* 0} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}$and $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\mathrm{B}_{\mathrm{s}} \rightarrow \Phi \mu^{+} \mu^{-}$
all involve same process:
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{\star+} \mu^{+} \mu^{-}$
- $\mathrm{B}^{+} \rightarrow \mathrm{K}^{0+} \mu^{+} \mu^{-}$
- $\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$

Putting it all together

$$
\mathcal{H}_{\mathrm{eff}} \approx-\frac{4 G_{F}}{\sqrt{2}} \sum_{i} V_{t b} V_{t s}^{*} C_{i} O_{i}
$$

Putting it all together

$$
\mathcal{H}_{\mathrm{eff}} \approx-\frac{4 G_{F}}{\sqrt{2}} \sum_{i} V_{t b} V_{t s}^{*} C_{i} O_{i}
$$

NP can modify C_{i} and add new operators

O9: Vector

Vector
Vector in mirror

O9: Vector

Vector
Vector in mirror

O_{10} : Axial Vector

Axial vector
Axial vector in mirror

O_{10} : Axial Vector

Axial vector
Axial vector in mirror

O_{10} : Axial Vector

Axial vector
Axial vector in mirror

O_{10} : Axial Vector

Axial vector
Axial vector in mirror

Constraints on $\mathrm{C}_{9}, \mathrm{C}_{10}$

arXiv:2104.08921 (2021)

Constraints on $\mathrm{C}_{9}, \mathrm{C}_{10}$

This paper, combining of all inputs: 7σ deviation of C_{9} from SM.

Conservative combination, using only subset of inputs (those save against hadronic effects), careful treatment of look elsewhere effect: 4.2б.
PLB 822 (2021) 136644 and arXiv:2110.09882 (2021)

Extraordinary claims require extraordinary evidence.... but we have reason to be "\#CautiouslyExcited"

Constraints on $\mathrm{C}_{9}, \mathrm{C}_{10}$

This paper, combining of all inputs: 7σ deviation of C_{9} from SM.

Conservative combination, using only subset of inputs (those save against hadronic effects), careful treatment of look elsewhere effect: 4.2б. PLB 822 (2021) 136644 and arXiv:2110.09882 (2021)

Extraordinary claims require extraordinary evidence.... but we have reason to be "\#CautiouslyExcited"

$R(D), R\left(D^{*}\right)$

See also Luke
Scantlebury-Smead's talk in the today's parallel session after lunch

Interpretation of flavour anomalies

Is it a leptoquark?

e.g.: JHEP 08 (2021) 050, JHEP 1711 (2017) 044, Phys.Lett.B 800 (2020) 135080, arXiv:2203.10111 (2022),

Interpretation of flavour anomalies

Is it a leptoquark?

e.g.: JHEP 08 (2021) 050, JHEP 1711 (2017) 044, Phys.Lett.B 800 (2020) 135080, arXiv:2203.10111 (2022),

A what??

When the first platypus were sent to Europe, European scientists didn't believe such an oddity could really exist, until the evidence became overwhelming

LFUV in -onia?

$\mathscr{R}_{\tau \mu}^{\Upsilon(3 S)}=\frac{\mathscr{B}\left(\Upsilon(3 S) \rightarrow \tau^{+} \tau^{-}\right)}{\mathscr{B}\left(\Upsilon(3 S) \rightarrow \mu^{+} \mu^{-}\right)}=0.966 \pm 0.008 \pm 0.014$
Within 2σ of SM value, 0.9948

Order of magnitude improvement in uncertainty over only previous measurement by CLEO, PRL 98 (2007) 052002 Relates to $R\left(D^{(*)}\right)$, see JHEP 06 (2017) 019

NA62 - optimised for very rare decay $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

Total Length 270 m

NA62 - optimised for very rare decay $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

NA62: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

2016 data: 1 signal candidate

NA62: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

2017 data: 2 signal candidates

NA62, better, more beautiful collimator since 2018

The old collimator

Current collimator (since June 2018)

NA62: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

2016, 2017 and 2018 data:

20 signal candidates (expect 7 background events)
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\left(\left.10.6_{-3.4}^{+4.0}\right|_{\text {stat }} \pm 0.9_{\text {syst }}\right) \times 10^{-11}$

NA62: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

NA62: JHEP 11 (2020) 042

NA62: JHEP 06 (2021) 093

2016, 2017 and 2018 data:

20 signal candidates (expect 7 background events)
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\left(10.6_{-3.4}^{+4.0} \mid\right.$ stat $\left.\pm 0.9_{\text {syst }}\right) \times 10^{-11}$

NA62: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

2016, 2017 and 2018 data:

20 signal candidates (expect 7 background events)
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\left(\left.10.6_{-3.4}^{+4.0}\right|_{\text {stat }} \pm 0.9_{\text {syst }}\right) \times 10^{-11}$

NA62: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$

2016, 2017 and 2018 data:

20 signal candidates (expect 7 background events)
$\operatorname{BR}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}\right)=\left(\left.10.6_{-3.4}^{+4.0}\right|_{\text {stat }} \pm 0.9_{\text {syst }}\right) \times 10^{-11}$

VELO:
replace completely - and upgrade to pixels

Scintillating

Fibre
Tracker
(almost compatible)

RICHes: New photodectors, new R/O, optimised RICH 1 geometry

Essentially a new detector running at increased luminosity.
Not just more lumi: Triggereless operation with online reconstruction and selection at 40 MHz means more signal per fb^{-1}

Upgrading LHCb during COVID

UK has major responsibilities for the LHCb upgrade especially in VELO and RICH - delivered in difficult circumstances.

See also Gianluca Zunica's talk in the today's parallel session after lunch

LHCb upgrades: Moving beyond discovery

- We appear to be on the brink of establishing physics beyond the SM, and flavour is the main window to it. To understand what that NP is, we will need to measure the heck out of flavour.

$$
S_{e_{e}} S_{u_{d a n \prime}}
$$

LHCb upgrades: Moving beyond discove. today at

- We appear to be on the brink of establishing physics beyond the SM, and flavour is the main window to it. To understand what that NP is, we will need to measure the heck out of flavour.

$$
s_{e_{e}} s_{L_{d}}
$$

LHCb upgrades: Moving beyond discolor the today a

- We appear to be on the brink of establishing physics beyond the SM,
 we will need to measure

Summary

- Flavour provides a unique window onto mass scales far beyond those reached in LHC collisions.
- The beautiful data accumulated over the past years give powerful constraints on models, with indications of physics beyond the SM that are intriguingly consistent across related decay modes.

- Precision is key. We badly need the huge clean datasets to be accumulated with the upgraded detectors.
- The future of flavour is luminous!

The end

LHCb upgrade physics reach - selected examples

Observable	Current LHCb (up to $\left.9 \mathrm{fb}^{-1}\right)$	Upgrade I $\left(23 \mathrm{fb}^{-1}\right)$		Upgrade II $\left(50 \mathrm{fb}^{-1}\right)$
$\left(300 \mathrm{fb}^{-1}\right)$				

$B \rightarrow K^{\star} \mu^{+} \mu^{-}$

FCNC, rare in the SM (BR ~10-6)

sensitive to New Physics in loops, e.g.

$$
D^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}, D^{0} \rightarrow K^{+} K^{-} \mu^{+} \mu^{-}
$$

$$
\begin{aligned}
& \mathscr{B}\left(D^{0} \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}\right) \sim 9.6 \times 10^{-7} \\
& \mathscr{B}\left(D^{0} \rightarrow K^{+} K^{-} \mu^{+} \mu^{-}\right) \sim 1.5 \times 10^{-7}
\end{aligned}
$$

Find enough of them at LHCb for angular analysis:

Angular analysis (above, 3 examples of many, many parameters measured) shows no discrepancy with SM

NA62 $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$

$$
\mathcal{B}\left(K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right)=(9.27 \pm 0.11) \times 10^{-8}
$$

T_{cc}

minimum quark content: $c c \bar{u} \bar{d}$ - doubly charmed

$T_{c c}$

minimum quark content: $c c \bar{u} \bar{d}$ - doubly charmed

This is data, not a simulation!

This is data, not a simulation!

Resonances in the $J / \psi \eta$ system

X_{C}^{\prime} : C-odd partner of $\chi_{c 1}(3872)$

- Predicted by many theoretical works
[JPS Conf. Proc. 13 (2017) 020023, EPJ Web Conf. 137 (2017) 06002, ...]
- Searched for by Belle and BarBar

$$
\begin{array}{ll}
\text { BarBar } & \mathcal{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{X}_{\mathrm{C}}^{\prime} \mathrm{K}^{+}\right) \times \mathcal{B}\left(\mathrm{X}_{\mathrm{C}}^{\prime} \rightarrow \mathrm{J} / \psi \eta\right)<7.7 \times 10^{-6} \quad \text { Phys. Rev. Lett. } 93 \text { (2004) } 041801 \\
\text { Belle } & \mathcal{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{X}_{\mathrm{C}}^{\prime} \mathrm{K}^{+}\right) \times \mathcal{B}\left(\mathrm{X}_{\mathrm{C}}^{\prime} \rightarrow \mathrm{J} / \psi \eta\right)<3.8 \times 10^{-6} \quad \underline{\text { PTEP 2014 (2014) 043C01 }}
\end{array}
$$

Other charmonium-(like) states

$B^{+} \rightarrow J / \psi \eta K^{+}$dataset

Full LHCb data, $\mathcal{L}=9 \mathrm{fb}^{-1}$

$$
=B^{+} \rightarrow J / \psi \eta K^{+}, J / \psi \rightarrow \mu^{+} \mu^{-}, \eta \rightarrow \gamma \gamma
$$

$$
N_{B^{+}}:(5.39 \pm 0.16) \times 10^{3}
$$

Clear signature of $\psi(2 S) \rightarrow J / \psi \eta$

Mixing in neutral meson systems

$$
\begin{aligned}
\left|M_{1,2}\right\rangle & =p\left|M^{0}\right\rangle \pm q\left|\bar{M}^{0}\right\rangle \\
\Delta \Gamma & =\Gamma_{2}-\Gamma_{1} \\
\Delta m & =m_{2}-m_{1} \\
\Gamma & =\frac{1}{2}\left(\Gamma_{1}+\Gamma_{2}\right)
\end{aligned}
$$

$$
P\left(M^{0} \rightarrow \bar{M}^{0}\right)(t)=\frac{1}{2}\left|\frac{q}{p}\right|^{2} e^{-\Gamma t}\left(\cosh \left(\frac{\Delta \Gamma}{2} t\right)-\cos (\Delta m t)\right)
$$

Mixing in neutral meson systems

$$
\begin{aligned}
\left|M_{1,2}\right\rangle & =p\left|M^{0}\right\rangle \pm q\left|\bar{M}^{0}\right\rangle \\
\Delta \Gamma & =\Gamma_{2}-\Gamma_{1} \\
\Delta m & =m_{2}-m_{1} \\
\Gamma & =\frac{1}{2}\left(\Gamma_{1}+\Gamma_{2}\right)
\end{aligned}
$$

CPV in mixing if not 1

$$
P\left(M^{0} \rightarrow \bar{M}^{0}\right)(t)=\frac{1}{2}\left|\frac{q}{p}\right|^{2} e^{-\Gamma t}\left(\cosh \left(\frac{\Delta \Gamma}{2} t\right)-\cos (\Delta m t)\right)
$$

Oscillations

- Bre Qscillations at mixing plot and result

$-B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \quad-\bar{B}_{s}^{0} \rightarrow B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \quad-$ Untagged

$$
\Delta m_{s}=17.7683 \pm 0.0051 \pm 0.0032 \mathrm{ps}^{-1}
$$

world's most precise

Oscillations

Phys. Rev. Lett. 110(2013) 101802 Phys. Rev. Lett. 111 (2013) 251801

$\Delta m_{S}=17.7683 \pm 0.0051 \pm 0.0032$ ps $^{-1}$

D° oscillations at LHCb

D mixing

PRL 127 (2021) 11, 111801

global fit

fit to LFU observables $+B_{s} \rightarrow \mu \mu$

technique \& 2011 data: Phys. Lett. B726 (2013) 151
 2012 data: LHCb-CONF 2013-006)

LHCb's γ combination

- LHCb combines inputs from
$\mathrm{B}^{ \pm} \rightarrow(\mathrm{hh})_{\mathrm{D}} \mathrm{K}^{ \pm}$
$\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \boldsymbol{\mathrm { s }} \pi \pi)_{\mathrm{D}} \mathrm{K}^{ \pm}$
$\left.\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{s} \mathrm{KK}\right)\right)_{\mathrm{D}}{ }^{ \pm}$
$\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \pi п \pi) \mathrm{D} \mathrm{K}^{ \pm}$
- Result:
$\gamma=(67.2 \pm 12)^{o}$
- More channels available, including $\mathrm{B}^{ \pm} \rightarrow \mathrm{D} \pi^{ \pm}, \mathrm{B}^{0} \rightarrow \mathrm{DK}^{*}$.
- Most recent addition: (KsKr) B

previous world average

$$
\gamma=68^{\circ} \pm 12^{\circ}
$$

(Moriond 2012):

LHCb's γ combination

2012 data: LHCb-CONF 2013-006)

- LHCb combines inputs from $\mathrm{B}^{ \pm} \rightarrow(\mathrm{hh})_{\mathrm{D}} \mathrm{K}^{ \pm}$ $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \boldsymbol{\mathrm { s }} \pi \mathrm{m}) \mathrm{DK}^{ \pm}$ $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{s} \mathrm{KK}\right)_{\mathrm{D}} \mathrm{K}^{ \pm}$ $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} п \pi \pi) \mathrm{D} \mathrm{K}^{ \pm}$
- Result:
$\gamma=(67.2 \pm 12)^{o}$
- More channels available, including $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}^{ \pm}, \mathrm{B}^{0} \rightarrow \mathrm{DK}^{*}$.
- Most recent addition: $\mathrm{B}(\mathrm{K} \mathrm{sK} \pi)_{\mathrm{o}} \mathrm{K}$

$\mathrm{B}_{(s)} \rightarrow \mu^{+} \mu^{-}$

Phys.Rev.Lett. 111 (2013) 101805

$$
\begin{array}{r}
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.9_{-1.0-0.1}^{+1.1+0.3}\right) \times 10^{-9} \\
\boldsymbol{\mathcal { B }}\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.7_{-2.1-0.4}^{+2.4+0.6}\right) \times 10^{-10}
\end{array}
$$

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.7_{-0.9}^{+1.0}\right) \times 10^{-9} \\
& \mathcal{B}\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.5_{-1.8}^{+2.1}\right) \times 10^{-10}
\end{aligned}
$$

[LHCb-CONF-2013-012] [CMS-PAS-BPH-13-007]

$$
\begin{array}{rl}
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=(2.9 \pm 0.7) \times 10^{-9} & \mathrm{SM}:(3.2 \pm 0.2) \times 10^{-9} \\
\mathcal{B}\left(B_{d}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.6_{-1.4}^{+1.6}\right) \times 10^{-10} & \mathrm{SM}:(1.0 \pm 0.1) \times 10^{-10} \tag{-10}\\
\text { Heavy Flavour Physics } & \\
& \text { IOP HEPP, 3 April 2022 } 68
\end{array}
$$

BELLE II

Moving beyond discovery

Figure A.1: Dimuon mass distrib. In the dark photon search at LHCb [446]. Note that the heavy-flavour background has been greatly suppressed.

$\mathrm{B} \rightarrow \mathrm{K} \mu^{+} \mu^{-}$vs $\mathrm{B} \rightarrow \mathrm{Ke}^{+} \mathrm{e}^{-}$

Summary \& conclusions

See talk by D. van Dyk and recent Anomaly WS for interpretation of results

Rare $b \rightarrow$ sll decays provide stringent tests of NP
Recent results hint at breaking of LFU in $b \rightarrow s$ Il

B_{s} Oscillations

- the Bs mixing plot and result
B_{s} oscillations at LHCb

world's most precise measurement of Δm_{s}
- the Bs mixir y plot and result
B_{s} oscillations at LHCb

world's most precise measurement of $\Delta \mathrm{m}_{\mathrm{s}}$

Charm loops

Charm loops

Charm loops

First observation of the decay: Phys.Rev.D 102 (2020) 5, 051102

A selected list NP-sensitive flavour variables

Type	Observable	Current precision	$\begin{gathered} \hline \hline \text { LHCb } \\ 2018 \end{gathered}$	$\begin{aligned} & \hline \hline \text { Upgrade } \\ & \left(50 \mathrm{fb}^{-1}\right) \end{aligned}$	Theory uncertainty
B_{s}^{0} mixing	$2 \beta_{s}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)$	0.10 [138]	0.025	0.008	~ 0.003
	$2 \beta_{s}\left(B_{s}^{0} \rightarrow J / \psi f_{0}(980)\right)$	0.17 [214]	0.045	0.014	~ 0.01
	$a_{\text {sl }}^{s}$	$6.4 \times 10^{-3}[43]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic penguins	$2 \beta_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \phi\right)$	-	0.17	0.03	0.02
	$2 \beta_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow K^{* 0} \bar{K}^{* 0}\right)$	-	0.13	0.02	< 0.02
	$2 \beta^{\text {eff }}\left(B^{0} \rightarrow \phi K_{S}^{0}\right)$	0.17 [43]	0.30	0.05	0.02
Right-handed currents	$2 \beta_{s}^{\text {eff }}\left(B_{s}^{0} \rightarrow \phi \gamma\right)$	-	0.09	0.02	<0.01
	$\tau^{\mathrm{eff}}\left(B_{s}^{0} \rightarrow \phi \gamma\right) / \tau_{B_{s}^{0}}$	-	5\%	1\%	0.2\%
Electroweak penguins	$S_{3}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-} ; 1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.08 [67]	0.025	0.008	0.02
	$s_{0} A_{\mathrm{FB}}\left(B^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}\right)$	25% [67]	6%	2%	7%
	$A_{\mathrm{I}}\left(K \mu^{+} \mu^{-} ; 1<q^{2}<6 \mathrm{GeV}^{2} / c^{4}\right)$	0.25 [76]	0.08	0.025	~ 0.02
	$\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}\right)$	25% [85]	8%	2.5\%	$\sim 10 \%$
Higgspenguins	$\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	1.5×10^{-9} [13]	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
	$\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) / \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$	${ }^{-}$	$\sim 100 \%$	$\sim 35 \%$	$\sim 5 \%$
Unitarity triangle angles	$\gamma\left(B \rightarrow D^{(*)} K^{(*)}\right)$	$\sim 10-12^{\circ}[244,258]$	4°	$0.9{ }^{\circ}$	negligible
	$\gamma\left(B_{s}^{0} \rightarrow D_{s} K\right)$	-	11°	2.0°	negligible
	$\beta\left(B^{0} \rightarrow J / \psi K_{\mathrm{s}}^{0}\right)$	0.8° [43]	0.6°	0.2°	negligible
Charm $C P$ violation	A_{Γ}	$2.3 \times 10^{-3}[43]$	0.40×10^{-3}	0.07×10^{-3}	-
	$\Delta \mathcal{A}_{C P}$	$2.1 \times 10^{-3}[18]$	0.65×10^{-3}	0.12×10^{-3}	-

Eur.Phys.J. C73 (2013) 2373

A selected list NP-sensitive flavour variables

Type	Observable \quad Current \quadLHCb nonocion Opgrade	Theory uncertainty
B_{s}^{0} mixing	- Plenty of theoretically clean channels with high sensitivity and discriminating power for New Physics models	$\begin{gathered} \sim 0.003 \\ \sim 0.01 \\ 0.03 \times 10^{-3} \end{gathered}$
Gluonic penguins		$\begin{gathered} 0.02 \\ <0.02 \\ 0.02 \end{gathered}$
Right-handed currents	- Theoretical uncertainties in many cases far better than current experimental sensitivity (and improving).	<0.01 0.2%
Electroweak penguins		$\begin{gathered} 0.02 \\ 7 \% \\ \sim 0.02 \\ \sim 10 \% \\ \hline \end{gathered}$
$\begin{gathered} \text { Higgs } \\ \text { penguins } \end{gathered}$	- Lots of room for New Physics to hide - and opportunity to find it!	$\begin{gathered} 0.3 \times 10^{-9} \\ \sim 5 \% \\ \hline \end{gathered}$
Unitarity triangle angles		negligible negligible negligible
$\begin{gathered} \text { Charm } \\ C P \text { violation } \end{gathered}$	- Need (even) better experimental precision to fully exploit flavour physics' sensitivity to physics beyond the SM.	${ }_{-}^{-}$

The LHCb upgrade

VELO:
 replace completely -
 and upgrade from Si strips
 to pixels

- Higher luminosity \Longrightarrow higher precision \Rightarrow better NP reach.
- Trigger is at the heart of the upgrade. Current trigger would "choke", the signal yields would not increase in line with luminosity.
- For upgrade, read out the entire detector at bunch-crossing rate of 40 MHz , fully customisable s/w trigger, with full event information.
- Doubles the trigger efficiency for hadronic modes. Most flexible/ customisable trigger at the LHC.

Future prospects for LFU tests at LHCb

$$
\begin{array}{lllllllllll}
2022 & 2023 & 2024 & 2025 & 2026 & 2027 & 2028 & 2029 & 2030 & 2031 & \ldots
\end{array}
$$

		Run 3	Run 4	Upgrade II
R_{X} precision	$9 \mathrm{fb}^{-1}$	$23 \mathrm{fb}^{-1}$	$50 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$
R_{K}	0.043	0.025	0.017	0.007
$R_{K^{* 0}}$	0.052	0.031	0.020	0.008
R_{ϕ}	0.130	0.076	0.050	0.020
$R_{p K}$	0.105	0.061	0.041	0.016
R_{π}	0.302	0.176	0.117	0.047

BELLE II plans ICHEP 2020 vs now

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

equal amounts of matter and antimatter

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

equal amounts of matter and antimatter

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

over

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

CP violation and New Physics

- While there is $\mathrm{O}(10 \%)$ agreement between the SM description of CP violation, and recent measurements, there are several orders of magnitude disagreement between CPV in the SM and CPV in the universe.

- There must be new sources of CP violation.

How Precise is Precise enough?

How Precise is Precise enough?

- Increasing precision pays off as long as it significantly increases our understanding of physics.

How Precise is Precise enough?

- Increasing precision pays off as long as it significantly increases our understanding of physics.
- There are two scenarios when we might argue that we have reached sufficient experimental precision:

How Precise is Precise enough?

- Increasing precision pays off as long as it significantly increases our understanding of physics.
- There are two scenarios when we might argue that we have reached sufficient experimental precision:
- We have seen New Physics, fully understand the theory underlying it, and have measured all its fundamental parameters.

How Precise is Precise enough?

- Increasing precision pays off as long as it significantly increases our understanding of physics.
- There are two scenarios when we might argue that we have reached sufficient experimental precision:
- We have seen New Physics, fully understand the theory underlying it, and have measured all its fundamental parameters.

How Precise is Precise enough?

- Increasing precision pays off as long as it significantly increases our understanding of physics.
- There are two scenarios when we might argue that we have reached sufficient experimental precision:
- We have seen New Physics, fully understand the theory underlying it, and have measured all its fundamental parameters.
- When precision is limited by the precision of theory calculations. Improving fast through faster computers and cleverer algorithms.

How Precise is Precise enough?

- Increasing precision pays off as long as it significantly increases our understanding of physics.
- There are two scenarios when we might argue that we have reached sufficient experimental precision:
- We have seen New Physics, fully understand the theory underlying it, and have measured all its fundamental parameters.
- When precision is limited by the precision of theory calculations. Improving fast through faster computers and cleverer algorithms.
- We need to identify theoretically clean measurements with high sensitivity and discriminating power for New Physics models.

Flavour anomalies

$$
B^{0} \rightarrow K^{*} \mu^{+} \mu^{-},
$$

ATLAS result at: https://arxiv.org/abs/2001.07115

Particle ID with the LHCb RICH

LHCb: EPJ C 73:2431 (2013)

LHCb RICH particle ID in action

LHCb RICH particle ID in action

LHCb: JHEP 1210 (2012) 037

LHCb RICH particle ID in action

LHCb: JHEP 1210 (2012) 037

Pentaquarks 2006

PENTAQUARK UPDATE

Written February 2006 by G. Trilling (LBNL).

To summarize, with the exception described in the previous paragraph, there has not been a high-statistics confirmation of any of the original experiments that claimed to see the Θ^{+}; there have been two high-statistics repeats from Jefferson Lab that have clearly shown the original positive claims in those two cases to be wrong; there have been a number of other highstatistics experiments, none of which have found any evidence for the Θ^{+}; and all attempts to confirm the two other claimed pentaquark states have led to negative results. The conclusion that pentaquarks in general, and the Θ^{+}, in particular, do not exist, appears compelling.

FCNC and New Physics

- The suppression of FCNC is an "accidental" symmetry of the SM. There is no fundamental reason why it should persist in models beyond the SM.
- \Rightarrow High sensitivity to New Physics Low "Standard Model background".
- Note that NP can affect FCNC in up and down-type quarks differently. Study both, beauty \& charm!

Sensitivity of FCNC to NP mass scales

- "Simple" NP models ruled out up to PeV scale, by Flavour Physics.
- Flavour physics imposes severe constraints on the structure and mass scale of NP

Ann.Rev.Nucl.Part.Sci.60:355,2010 plot from M. Neubert at EPS-HEP 2011
$\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}+\frac{c_{i}}{\Lambda_{i}} O_{i}$, take $c_{i}=1$

proton - (anti)proton cross sections
Flavour physics at the LHC

- Huge b cross section, even huger (20x) charm cross section.
- All types of b and c hadrons (like B^{0}, $\left.B_{s}, B_{c}, \Lambda_{b}, \ldots\right)$.
- The world's largest heavy flavour samples, and a dedicated flavour physics detector (LHCb).
- Best place to do heavy flavour physics, today.

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

Heavy flavour physics at the LHC

- LHCb: Dedicated flavour physics experiment a
- Optimised geometry
- RICH particle ID (K/r separation)

small \& mighty

- Most precise vertexing at LHC
- Dedicated heavy flavour trigger (incl B \rightarrow hadrons)
- Best mass resolution at LHC (for heavv flavour).
- ATLAS, CMS' heavy flavour skills:
- good μ coverage,
- efficient di-muon trigger,
- maximal luminosity.
- Good at rare dimuon decays such as $\mathrm{B}_{(\mathrm{s})} \rightarrow \mu \mu$.
- ALICE: Cleanly reconstructs heavy flavour decays, focussed on quark-gluon plasma.

LHCb model-independent γ from $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{s} \pi \pi\right)_{\mathrm{D}} \mathrm{K}$ and $\mathrm{B}^{ \pm} \rightarrow(\mathrm{Ks} K K) \mathrm{DK}$

- Binned, model-independent analysis using CLEO-c and BES III input.
- Plots show LHCb run I+ll data

- Result of combined analysis

$$
\gamma=\left(68.7_{-5.1}^{+5.2}\right)^{\circ}
$$

CLEO-c input:: Phys. Rev. D 82 112006. BESIII input:

Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007)

Biggest change for charm inputs to CPV in B since 2018: BES III
$D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$
binning

$$
Z_{i}=c_{i}+i s_{i}
$$

results

$R(K): B^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-} / \mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}$

$R(K): B^{+} \rightarrow K^{+} \mu^{+} \mu^{-} / B^{+} \rightarrow K^{+} e^{+} e^{-}$

Mixing results
$x=3.98_{-0.54}^{+0.56}, x \neq 0$ at 5σ CL - first observation!

P Anixing results

CPV allowed

$x=3.98_{-0.54}^{+0.56} x \neq 0$ at 5σ CL - first observation!

Charm input to γ from CLEO-c and LHCb mixing measurements

Use interference effects in charm as input to γ

$$
\Gamma\left(\mathrm{B}^{-} \rightarrow\left(\mathrm{K}^{+} 3 \pi\right)_{\mathrm{D}} \mathrm{~K}^{-}\right) \propto r_{B}^{2}+\left(r_{D}^{K 3 \pi}\right)^{2}+2 R_{K 3 \pi} r_{B} r_{D}^{K 3 \pi} \cdot \cos \left(\delta_{B}+\delta_{D}^{K 3 \pi}-\gamma\right)
$$

from $D-\bar{D}$
superpositions at CLEO-c

Input from charm mixing
(LHCb)

PRL 116 (2016) no.24, 241801

Combination:CLEO-c and mixing

Phys.Lett. B757 (2016) 520-527

Phys.Lett. B757 (2016) 520-527

CLEO-c input theory: Atwood, Soni: Phys.Rev. D68 (2003) 033003
CLEO-c input: Phys.Rev.D80:031105,2009, update
mixing/gamma theory: JHEP 1503 (2015) 169 Phys.Lett. B728 (2014) 296-302

Putting it all together

Putting it all together

$$
\begin{aligned}
\mathcal{O}_{7} & =\frac{e}{g^{2}} m_{b} \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \\
\mathcal{O}_{9 \ell} & =\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell \\
\mathcal{O}_{10 \ell} & =\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell
\end{aligned}
$$

Putting it all together

$$
\begin{aligned}
\mathcal{O}_{7} & =\frac{e}{g^{2}} m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b & \text { soft/real photon } \\
\mathcal{O}_{9 \ell} & =\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell & \text { Z/hard photon } \\
\mathcal{O}_{10 \ell} & =\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell & \mathrm{Z}
\end{aligned}
$$

Putting it all together

$$
\begin{array}{rlll}
\mathcal{O}_{7} & =\frac{e}{g^{2}} m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b & \text { soft/real photon } & C_{7}^{S M}=-0.29 \\
\mathcal{O}_{9 \ell} & =\frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell & \text { Z/hard photon } & C_{9}^{S M}=4.1 \\
\mathcal{O}_{10 \ell}=\frac{e^{2}}{g^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell & \text { Z } & C_{10}^{S M}=-4.3
\end{array}
$$

Putting it all together

$$
\begin{array}{rll}
\mathcal{O}_{7}=\frac{e}{g^{2}} m_{b} \overline{\boldsymbol{s}} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b & \text { soft/real photon } & C_{7}^{S M}=-0.29 \\
\mathcal{O}_{9 \ell} & =\frac{e^{2}}{g^{2}} \overline{\boldsymbol{s}} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell & \text { Z/hard photon }
\end{array} C_{9}^{S M}=4.1
$$

NP can modify C_{i} and add new operators

$d \Gamma$ $\frac{d \Gamma}{d q^{2}}$ in $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$and others

$d \Gamma$
 $\frac{d \Gamma}{d q^{2}}$ in $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$and others

LHCb: JHEP 06 (2014) 133

Pentaquarks 2018

LHCb: PRL 115 (2015) 072001

Pentaquarks 2020

$$
\Lambda_{b}^{0} \rightarrow J / \psi K^{-} p
$$

LHCb: PRL 122 (2019) 22, 222001

$9 \times$ stats

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}](95 \% \mathrm{CL})$	$\mathcal{R}[\%]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-}^{+3.7}(<27)$	$0.30 \pm 0.07_{-0.09}^{+0.34}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	$20.6 \pm 4.9_{-10.1}^{+8.7}(<49)$	$1.11 \pm 0.33_{-0.10}^{+0.22}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}(<20)$	$0.53 \pm 0.16_{-0.13}^{+0.15}$

Heavy flavour physics at the LHC

- LHCb: Dedicated flavour physics experiment a
- Optimised geometry
- RICH particle ID (K/r separation)

small \& mighty

- Most precise vertexing at LHC
- Dedicated heavy flavour trigger (incl B \rightarrow hadrons)
- Best mass resolution at LHC (for heavv flavour).
- ATLAS, CMS' heavy flavour skills:
- good μ coverage,
- efficient di-muon trigger,
- maximal luminosity.
- Good at rare dimuon decays such as $\mathrm{B}_{(\mathrm{s})} \rightarrow \mu \mu$.
- ALICE: Cleanly reconstructs heavy flavour decays, focussed on quark-gluon plasma.

$B \rightarrow K^{\star} \mu^{+} \mu^{-}: P^{\prime} 5$

- Describes interference between polar and axial vector currents.

Theory: JHEP 05 (2013) 137

- Deviation from SM: 3.3 o global significance. $\begin{gathered}\text { LHCb Run } 1+2016 \\ \text { SM from DHMV }\end{gathered}$

$B \rightarrow K^{\star} \mu^{+} \mu^{-}: P^{\prime} 5$

- Describes interference between polar and axial vector currents.

Theory: JHEP 05 (2013) 137

- Deviation from SM: 3.3 o global ${ }^{-}$significance. \quad LHCb Run $1+2016$

Slide on B->DK, D->K3pi, with new BES III result

BESIII: JHEP 05 (2021) 164

Biggest change for charm inputs to CPV in B since 2018: BES III
$D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$
binning

$$
Z_{i}=c_{i}+i s_{i}
$$

results

Normalisation channel: $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{J} / \Psi$

$$
\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{J} / \psi\left(\mu^{+} \mu^{-}\right)
$$

$$
B^{+} \rightarrow K^{+} \mathrm{J} / \Psi\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

+ further $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{J} / \psi\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$samples (different trigger lines)

$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$

Color scale:

$$
\frac{\Gamma\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)-\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)+\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}
$$

$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$

Color scale:

$$
\frac{\Gamma\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)-\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)+\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}
$$

$B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$

Color scale:

$$
\frac{\Gamma\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)-\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+}\right)+\Gamma\left(B^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-}\right)}
$$

Heavy flavour physics

- LHCb: Dedicated flavour physics experiment at the LHC. Huge $b \bar{b}$ and $c \bar{c}$ cross section, optimised detector and trigger.
- ATLAS, CMS Main flavour skill: B decays with two muons, such as $\mathrm{B}_{(s)} \rightarrow \mu \mu$.
- BaBar, BELLE, BELLE II: Know initial state in $e^{+} e^{-}$collisions, good at reconstructing missing momentum, decays with neutral particles.
- BES III: Its quantum-correlated D-D pairs have unique properties.
- NA62: Dedicated Kaon experiment.

Charm input to CPV in B

Charm is not just input to $B \rightarrow D K$ (and related) for $\gamma . B \rightarrow D K$ is also input to charm.

LHCb: JHEP 12 (2021) 141

LHCb model-independent γ from $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \boldsymbol{\mathrm { L }} \pi)_{\mathrm{D}} \mathrm{K}$ and $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{\mathrm{s}} \mathrm{KK}\right)_{\mathrm{D}} \mathrm{K}$

- Model-independent analysis using CLEO-c and BES III input.
- Plots show LHCb run I+II data
- Result of combined analysis

$$
\gamma=\left(68.7_{-5.1}^{+5.2}\right)^{\circ}
$$

LHCb model-independent γ from $\mathrm{B}^{ \pm} \rightarrow(\mathrm{K} \boldsymbol{\mathrm { L }} \pi)_{\mathrm{D}} \mathrm{K}$ and $\mathrm{B}^{ \pm} \rightarrow\left(\mathrm{K}_{\mathrm{s}} \mathrm{KK}\right)_{\mathrm{D}} \mathrm{K}$

- Model-independent analysis using CLEO-c and BES III input.
- Plots show LHCb run I+ll data
- Result of combined analysis

$$
\gamma=\left(68.7_{-5.1}^{+5.2}\right)^{\circ}
$$

Interpretation

New gauge boson? Could even be at tree level, i.e. a flavourchanging Z' with non-universal couplings.
e.g. arXiv:1606.09191, PRD96 (2017) no.9, 095009
$m\left(Z^{\prime}\right)$ could be heavy (many TeV), fairly light Z’ ($\sim \mathrm{GeV}$) alo possible (see PRD96 (2017) no.9, 095009)
\bar{b}
\bar{s}
B^{0}
K^{*}
d
d

Unitarity triangle

Model-independent analysis of charm mixing in

 $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$| Parameter | Value |
| :---: | :---: |
| $x\left[10^{-3}\right]$ | $3.98_{-0.54}^{+0.56}$ |
| $y\left[10^{-3}\right]$ | $4.6_{-1.4}^{+1.4}$ |
| $\|q / p\|$ | 0.996 ± 0.052 |
| ϕ | $-0.056_{-0.051}^{+0.047}$ |

This is real data, not simulation. 30.6M signal events

Model-independent analysis of charm mixing in $D^{0} \rightarrow K_{S} \pi^{+} \pi^{-}$

Uses input from CLEO-c and BES III to remove amplitude model dependence

Time-dependent analysis in each bin

This is real data, not simulation. 30.6M signal events

[^0]: Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018 Belle Collaboration Phys.Rev. D70 (2004) 072003

[^1]: See also Jake and Richard Lane's and Ben Westhenry's talks in the today and Wednesday afternoon's parallel.

