ECR Forum

Electrons for Neutrinos, Old and New Experiments at Jefferson Lab and Beyond

Stuart Fegan University of York November 2nd, 2021

	UNIVEDSITY	Preamble	Introduction	e2a Analysis	The Future
	of Vork	- Who Am I?			
0		••••••••			

Participated in experimental programs at Jefferson Lab, A2@MAMI and BESIII, with some Jefferson Lab work overlapping with SLAC, FermiLab and Brookhaven

- PhD, University of Glasgow, 2012
- Postdoc, INFN Genova, 2012-14
- Postdoc, JGU Mainz, 2015-17
- Postdoc, GWU, 2017-19
- Postdoc, University of York, 2019-present

- Extracting oscillation parameters from neutrino experiments is sensitive to (currently) poorly constrained physics models
- Key to future success of neutrino experiments is constraining these models of lepton-nucleus interations

- With increasing energy, scattering is dominated by different interactions
- Start by looking at Quasi-Elastic (QE) process
- Follow up with studies of the role of resonance production

Quasi-Elastic scattering off nuclei similar with both electrons and neutrinos

Resonance production from electrons also similar to that from neutrinos

Idea: Use electron scattering data to study electron-nucleon interactions and inform models of neutrino-nucleon interactions!

Com S.	UNIVEDSITY	Preamble	Introduction	e2a Analysis	The Future
	of York	Jefferson Lab			

- US DoE facility, Newport News, VA
- Superconducting RF accelerator electron beams up to 12 GeV
- Four experimental halls

- CEBAF Large Acceptance Spectrometer (1995-2012)
- Multi layered and segmented
- Toroidal magnetic field

- From a CLAS perspective, e4nu uses electron scattering data on nuclear targets
- Seeking to constrain models of lepton-nucleus interations needed to better describe neutrino interactions
- This started with a PhD student at Old Dominnion University¹
- I've been working with several collaborators to continue this work
- Particular credit goes to Lucas Tracy, Ali Mand, Afro Papadopoulou and Florian Hausenstein

¹Mariana Khachatryan, "Validation of Neutrino Energy Estimation Using Electron Scattering Data", PhD Thesis, ODU (2019), supervised by Larry Weinstein

- April/May 1999
- Electron beam experiment
- Various targets

	1.1 GeV	2.2 GeV	4.4 GeV
³ He	~	1	✓
⁴ He		1	1
¹² C	1	1	1
⁵⁶ Fe	—	1	1

Particle Identification

Preamble

 Cuts, corrections and calibrations common to original e2a analyses

The Future

- Select events with electron, proton and charged pion in final state
- Minor updates and extensions, e.g. better fiducial cuts, direct π⁰ identification

ntroduction

- Want to reconstruct beam energy from detected particles
- Beam energy known, can compare to neutrino generators
- Two methods, "Calorimetric", using all final state particles

$$E_{cal} = \sum E_i + \epsilon$$

And "Kinematic", using the scattered electron

$$E_{QE} = \frac{2M_N\epsilon + 2M_NE_l - m_l^2}{2(M_N - E_l + k_l\cos\theta_l)}$$

Calorimetric reconstruction (left) and QE kinematic reconstruction (right)

 1 Mariana Khachatryan, et. al. "Electron Beam Energy Reconstruction for Neutrino Oscillation Measurements", Accepted for publication by Nature (2021)

- We can play the same game of beam energy reconstruction, and neutrino generator comparison, with resonance events
- Same two methods, "Calorimetric", using all final state particles

$$E_{cal} = \sum E_i + \epsilon = E'_{e^-} + E_p + \epsilon + E_{\pi}$$

 \blacksquare And "Kinematic", using the scattered electron, assuming Δ production

$$E_{Del} = \frac{m_{\Delta}^2 - (m_p - \epsilon)^2 - 2(m_p - \epsilon)E'_{e^-}}{2(m_p - \epsilon - E'_{e^-} + E'_{e^-} \cos\theta_{e^-})}$$

- ³He at 2.2 GeV
- A(e,e'p π) not Δ dominated, "Kinematic" reconstruction of limited use

- Some particles undetected, fall through CLAS acceptance gaps
- Effect on energy reconstruction

Com S.	UNIVERSITY	Preamble	Introduction	e2a Analysis	The Future
	of York	Rotations			

- Select events with multiple hadrons
- Randomly rotate around direction of three momentum transfer
- Some events fall into acceptance gaps
- Proportion of events lost used to estimate undetected ones
- Subtract from energy reconstruction spectra
- Produce "true" $1p1\pi$ event samples

Targets: ³He, ⁴He, ¹²C, ⁵⁶Fe

- GENIE (Generates Events for Neutrino Interaction Experiments)
- GiBUU (The Giessen Boltzmann-Uehling-Uhlenbeck Project)

- Each model has different approaches to describing lepton-nucleus interactions
- Different values of neutrino oscillation parameters extracted

- GENIE is the basis for event generator studies
- Used in predecessor analysis
- Expertise (and code) readily available in e4nu

- GiBUU a possible cross-check
- Used already for other projects in York, can also apply to e4nu

Pion Transparency

- All neutrino generators use hadron beam data to tune final state interactions
- Reliant on total cross section, with numerous contributions
- Possible alternative is to use *transparency*, the probability a hadron produced in nuclear medium escapes
- Like beam energy reconstruction, this is easier and more accurate to achieve with electron scattering data than with neutrino data

- Energy reconstruction analysis has been highly successful on zero pion analysis
- Extension to $p\pi$ events
- Beam energy peaks clear for $p\pi^-$, less so for $p\pi^+$ and $p\pi^0$
- Next steps in energy reconstruction analysis are to bin in kinematic variables, make measurements and fully compare to neutrino event generators
- Expansion beyond the game of energy reconstruction already underway

- Starting this month, a dedicated beamtime for e4nu takes place at JLab
- Once again in Hall B, with CLAS12, the 12 GeV upgraded version of CLAS
- Much of the analysis software uses the format of GENIE trees in ROOT, i.e. good to go almost as soon as we have data

لأنتك	UNIVERSITY	Preamble	Introduction	e2a Analysis	The Future
	of York	Run Group M			

- Nuclear targets, including Deuterium, Calcium, Argon and Tin
- 1, 2, 4 and 6 GeV beams

- RGM will greatly expand our available data for e4nu
- Kinematic overlap with the latest generation of neutrino experiments

26/27

6 m 18	UNIVERSITY	Preamble	Introduction	e2a Analysis	The Future
	of York	Summary			

E4nu is a successful demonstration of:

- Interdisciplinary research Fresh perspectives from other fields
- Data mining Breathing new life into older data
- Diversifying the JLab program Motivating new experimental work

Targets: ³He, ⁴He, ¹²C, ⁵⁶Fe, A(e,e'p π^0)

- Very loose π⁰ selection from two photon invariant mass
- Beam energy peak visible

Targets: ³He, ⁴He, ¹²C, ⁵⁶Fe

